Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(36): 13391-13400, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656963

RESUMEN

Raspberry ketone has generated interest in recent years both as a flavor agent and as a health promoting supplement. Raspberry ketone can be synthesized chemically, but the value of a natural nonsynthetic product is among the most valuable flavor compounds on the market. Coumaroyl-coenzyme A (CoA) is the direct precursor for raspberry ketone but also an essential precursor for flavonoid and lignin biosynthesis in plants and therefore highly regulated. The synthetic fusion of 4-coumaric acid ligase (4CL) and benzalacetone synthase (BAS) enables the channeling of coumaroyl-CoA from the ligase to the synthase, proving to be a powerful tool in the production of raspberry ketone in both N. benthamiana and S. cerevisiae. To the best of our knowledge, the key pathway genes for raspberry ketone formation are transiently expressed in N. benthamiana for the first time in this study, producing over 30 µg/g of the compound. Our raspberry ketone producing yeast strains yielded up to 60 mg/L, which is the highest ever reported in yeast.


Asunto(s)
Productos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Nicotiana/genética , Metabolismo Secundario
2.
ACS Synth Biol ; 12(4): 1021-1033, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36976676

RESUMEN

Engineered microbial cells can produce sustainable chemistry, but the production competes for resources with growth. Inducible synthetic control over the resource use would enable fast accumulation of sufficient biomass and then divert the resources to production. We developed inducible synthetic resource-use control overSaccharomyces cerevisiae by expressing a bacterial ClpXP proteasome from an inducible promoter. By individually targeting growth-essential metabolic enzymes Aro1, Hom3, and Acc1 to the ClpXP proteasome, cell growth could be efficiently repressed during cultivation. The ClpXP proteasome was specific to the target proteins, and there was no reduction in the targets when ClpXP was not induced. The inducible growth repression improved product yields from glucose (cis,cis-muconic acid) and per biomass (cis,cis-muconic acid and glycolic acid). The inducible ClpXP proteasome tackles uncertainties in strain optimization by enabling model-guided repression of competing, growth-essential, and metabolic enzymes. Most importantly, it allows improving production without compromising biomass accumulation when uninduced; therefore, it is expected to mitigate strain stability and low productivity challenges.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica
3.
Methods Mol Biol ; 2513: 221-242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781208

RESUMEN

The current progress in sequencing of genomes and characterization of new species provides an increasing list of yeasts that show interesting physiological properties; however, the lack of expression tools for these new hosts is prohibiting their broader use in research or industry. Recently, we developed a universal expression system (SES) functional in broad spectrum of fungal species, which represent a solution for feasible gene expression control and genetic manipulation in these novel hosts. Here, we describe three example approaches for DNA transformation and high-level heterologous gene expression, using the SES system, in three yeast species, where minimal knowledge or prior experience in genetic modifications is available.


Asunto(s)
Edición Génica , Industrias , Expresión Génica , Filogenia
4.
Microb Cell Fact ; 20(1): 34, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536025

RESUMEN

BACKGROUND: Anthranilate is a platform chemical used by the industry in the synthesis of a broad range of high-value products, such as dyes, perfumes and pharmaceutical compounds. Currently anthranilate is produced via chemical synthesis from non-renewable resources. Biological synthesis would allow the use of renewable carbon sources and avoid accumulation of toxic by-products. Microorganisms produce anthranilate as an intermediate in the tryptophan biosynthetic pathway. Several prokaryotic microorganisms have been engineered to overproduce anthranilate but attempts to engineer eukaryotic microorganisms for anthranilate production are scarce. RESULTS: We subjected Saccharomyces cerevisiae, a widely used eukaryotic production host organism, to metabolic engineering for anthranilate production. A single gene knockout was sufficient to trigger anthranilate accumulation both in minimal and SCD media and the titer could be further improved by subsequent genomic alterations. The effects of the modifications on anthranilate production depended heavily on the growth medium used. By growing an engineered strain in SCD medium an anthranilate titer of 567.9 mg l-1 was obtained, which is the highest reported with an eukaryotic microorganism. Furthermore, the anthranilate biosynthetic pathway was extended by expression of anthranilic acid methyltransferase 1 from Medicago truncatula. When cultivated in YPD medium, this pathway extension enabled production of the grape flavor compound methyl anthranilate in S. cerevisiae at 414 mg l-1. CONCLUSIONS: In this study we have engineered metabolism of S. cerevisiae for improved anthranilate production. The resulting strains may serve as a basis for development of efficient production host organisms for anthranilate-derived compounds. In order to demonstrate suitability of the engineered S. cerevisiae strains for production of such compounds, we successfully extended the anthranilate biosynthesis pathway to synthesis of methyl anthranilate.


Asunto(s)
Ingeniería Metabólica , Microorganismos Modificados Genéticamente/metabolismo , Saccharomyces cerevisiae/metabolismo , ortoaminobenzoatos/metabolismo , Microorganismos Modificados Genéticamente/genética , Saccharomyces cerevisiae/genética
5.
Curr Opin Biotechnol ; 59: 141-149, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31154079

RESUMEN

Fungi are a highly diverse group of microbial species that possess a plethora of biotechnologically useful metabolic and physiological properties. Important enablers for fungal biology studies and their biotechnological use are well-performing gene expression tools. Different types of gene expression tools exist; however, typically they are at best only functional in one or a few closely related species. This has hampered research and development of industrially relevant production systems. Here, we review operational principles and concepts of fungal gene expression tools. We present an overview on tools that utilize endogenous fungal promoters and modified hybrid expression systems composed of engineered promoters and transcription factors. Finally, we review synthetic expression tools that are functional across a broad range of fungal species.


Asunto(s)
Hongos , Expresión Génica , Ingeniería Metabólica , Regiones Promotoras Genéticas , Biología Sintética , Factores de Transcripción
6.
Sci Rep ; 9(1): 5032, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902998

RESUMEN

Trichoderma reesei is an established protein production host with high natural capacity to secrete enzymes. The lack of efficient genome engineering approaches and absence of robust constitutive gene expression systems limits exploitation of this organism in some protein production applications. Here we report engineering of T. reesei for high-level production of highly enriched lipase B of Candida antarctica (calB) using glucose as a carbon source. Multiplexed CRISPR/Cas9 in combination with the use of our recently established synthetic expression system (SES) enabled accelerated construction of strains, which produced high amounts of highly pure calB. Using SES, calB production levels in cellulase-inducing medium were comparable to the levels obtained by using the commonly employed inducible cbh1 promoter, where a wide spectrum of native enzymes were co-produced. Due to highly constitutive expression provided by the SES, it was possible to carry out the production in cellulase-repressing glucose medium leading to around 4 grams per liter of fully functional calB and simultaneous elimination of unwanted background enzymes.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/genética , Ingeniería Genética/métodos , Lipasa/genética , Trichoderma/genética , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Medios de Cultivo/farmacología , Proteínas Fúngicas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Microbiología Industrial/métodos , Lipasa/metabolismo , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Trichoderma/metabolismo
7.
Food Microbiol ; 76: 164-172, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30166137

RESUMEN

This study focused on the performance of the dextran producer Leuconostoc citreum as starter culture during 30 days of wheat flour type I sourdough propagation (back-slopping). As confirmed by RAPD-PCR analysis, the strain dominated throughout the propagation procedure, consisting of daily fermentations at 20 °C. The sourdoughs were characterized by consistent lactic acid bacteria cell density and acidification parameters, reaching pH values of 4.0 and mild titratable acidity. Carbohydrates consumption remained consistent during the propagation procedure, leading to formation of mannitol and almost equimolar amount of lactic and acetic acid. The addition of sucrose enabled the formation of dextran, inducing an increase in viscosity of the sourdough of 2-2.6 fold, as well as oligosaccharides. The transcriptional analysis based on glucosyltransferases genes (GH70) showed the existence in L. citreum FDR241 of at least five different dextransucrases. Among these, only one gene, previously identified as forming only α-(1-6) glycosidic bonds, was significantly upregulated in sourdough fermentation conditions, and the main responsible of dextran formation. A successful application of a starter culture during long sourdough back-slopping procedure will depend on the strain robustness and fermentation conditions. Transcriptional regulation of EPS-synthetizing genes might contribute to increase the efficiency of industrial processes.


Asunto(s)
Harina/microbiología , Leuconostoc/genética , Leuconostoc/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/genética , Transcripción Genética , Triticum/microbiología , Fermentación , Microbiología de Alimentos , Perfilación de la Expresión Génica , Glucosiltransferasas/genética , Glicosiltransferasas , Leuconostoc/efectos de los fármacos , Leuconostoc/enzimología , Reacción en Cadena de la Polimerasa/métodos , Sacarosa/farmacología
8.
Nucleic Acids Res ; 46(18): e111, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29924368

RESUMEN

Biotechnological production of fuels, chemicals and proteins is dependent on efficient production systems, typically genetically engineered microorganisms. New genome editing methods are making it increasingly easy to introduce new genes and functionalities in a broad range of organisms. However, engineering of all these organisms is hampered by the lack of suitable gene expression tools. Here, we describe a synthetic expression system (SES) that is functional in a broad spectrum of fungal species without the need for host-dependent optimization. The SES consists of two expression cassettes, the first providing a weak, but constitutive level of a synthetic transcription factor (sTF), and the second enabling strong, at will tunable expression of the target gene via an sTF-dependent promoter. We validated the SES functionality in six yeast and two filamentous fungi species in which high (levels beyond organism-specific promoters) as well as adjustable expression levels of heterologous and native genes was demonstrated. The SES is an unprecedentedly broadly functional gene expression regulation method that enables significantly improved engineering of fungi. Importantly, the SES system makes it possible to take in use novel eukaryotic microbes for basic research and various biotechnological applications.


Asunto(s)
Clonación Molecular/métodos , Hongos/genética , Regulación Fúngica de la Expresión Génica , Ingeniería Genética/métodos , Vectores Genéticos/genética , Aspergillus niger/genética , Expresión Génica , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Trichoderma/genética
9.
ACS Synth Biol ; 7(6): 1573-1587, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29750501

RESUMEN

Sustainable production of chemicals, materials, and pharmaceuticals is increasingly performed by genetically engineered cell factories. Engineering of complex metabolic routes or cell behavior control systems requires robust and predictable gene expression tools. In this challenging task, orthogonality is a fundamental prerequisite for such tools. In this study, we developed and characterized in depth a comprehensive gene expression toolkit that allows accurate control of gene expression in Saccharomyces cerevisiae without marked interference with native cellular regulation. The toolkit comprises a set of transcription factors, designed to function as synthetic activators or repressors, and transcription-factor-dependent promoters, which together provide a broad expression range surpassing, at high end, the strongest native promoters. Modularity of the developed tools is demonstrated by establishing a novel bistable genetic circuit with robust performance to control a heterologous metabolic pathway and enabling on-demand switching between two alternative metabolic branches.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética/métodos , Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica , Indoles/metabolismo , Redes y Vías Metabólicas/genética , Microorganismos Modificados Genéticamente , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética
10.
Appl Microbiol Biotechnol ; 101(22): 8151-8163, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29038973

RESUMEN

The important platform chemicals ethylene glycol and glycolic acid were produced via the oxidative D-xylose pathway in the yeast Saccharomyces cerevisiae. The expression of genes encoding D-xylose dehydrogenase (XylB) and D-xylonate dehydratase (XylD) from Caulobacter crescentus and YagE or YjhH aldolase and aldehyde dehydrogenase AldA from Escherichia coli enabled glycolic acid production from D-xylose up to 150 mg/L. In strains expressing only xylB and xylD, 29 mg/L 2-keto-3-deoxyxylonic acid [(S)-4,5-dihydroxy-2-oxopentanoic acid] (2K3DXA) was produced and D-xylonic acid accumulated to ca. 9 g/L. A significant amount of D-xylonic acid (ca. 14%) was converted to 3-deoxypentonic acid (3DPA), and also, 3,4-dihydroxybutyric acid was formed. 2K3DXA was further converted to glycolaldehyde when genes encoding by either YagE or YjhH aldolase from E. coli were expressed. Reduction of glycolaldehyde to ethylene glycol by an endogenous aldo-keto reductase activity resulted further in accumulation of ethylene glycol of 14 mg/L. The possibility of simultaneous production of lactic and glycolic acids was evaluated by expression of gene encoding lactate dehydrogenase ldhL from Lactobacillus helveticus together with aldA. Interestingly, this increased the accumulation of glycolic acid to 1 g/L. The D-xylonate dehydratase activity in yeast was notably low, possibly due to inefficient Fe-S cluster synthesis in the yeast cytosol, and leading to D-xylonic acid accumulation. The dehydratase activity was significantly improved by targeting its expression to mitochondria or by altering the Fe-S cluster metabolism of the cells with FRA2 deletion.


Asunto(s)
Glicol de Etileno/metabolismo , Glicolatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Caulobacter crescentus/genética , Escherichia coli/genética , Glicol de Etileno/aislamiento & purificación , Glucosa/metabolismo , Glicolatos/aislamiento & purificación , Hidroliasas/genética , Hidroliasas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Xilosa/análisis
11.
PLoS One ; 11(2): e0148320, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26901642

RESUMEN

This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF) onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1) the transcription-activation domain of the sTF, 2) the binding-site modules in the output promoter, and 3) the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications.


Asunto(s)
Saccharomyces cerevisiae/genética , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Biología Sintética/métodos , Factores de Transcripción/genética
12.
BMC Genomics ; 15: 763, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25192596

RESUMEN

BACKGROUND: Production of D-xylonate by the yeast S. cerevisiae provides an example of bioprocess development for sustainable production of value-added chemicals from cheap raw materials or side streams. Production of D-xylonate may lead to considerable intracellular accumulation of D-xylonate and to loss of viability during the production process. In order to understand the physiological responses associated with D-xylonate production, we performed transcriptome analyses during D-xylonate production by a robust recombinant strain of S. cerevisiae which produces up to 50 g/L D-xylonate. RESULTS: Comparison of the transcriptomes of the D-xylonate producing and the control strain showed considerably higher expression of the genes controlled by the cell wall integrity (CWI) pathway and of some genes previously identified as up-regulated in response to other organic acids in the D-xylonate producing strain. Increased phosphorylation of Slt2 kinase in the D-xylonate producing strain also indicated that D-xylonate production caused stress to the cell wall. Surprisingly, genes encoding proteins involved in translation, ribosome structure and RNA metabolism, processes which are commonly down-regulated under conditions causing cellular stress, were up-regulated during D-xylonate production, compared to the control. The overall transcriptional responses were, therefore, very dissimilar to those previously reported as being associated with stress, including stress induced by organic acid treatment or production. Quantitative PCR analyses of selected genes supported the observations made in the transcriptomic analysis. In addition, consumption of ethanol was slower and the level of trehalose was lower in the D-xylonate producing strain, compared to the control. CONCLUSIONS: The production of organic acids has a major impact on the physiology of yeast cells, but the transcriptional responses to presence or production of different acids differs considerably, being much more diverse than responses to other stresses. D-Xylonate production apparently imposed considerable stress on the cell wall. Transcriptional data also indicated that activation of the PKA pathway occurred during D-xylonate production, leaving cells unable to adapt normally to stationary phase. This, together with intracellular acidification, probably contributes to cell death.


Asunto(s)
Pared Celular/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Azúcares Ácidos/metabolismo , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ARN , Estrés Fisiológico , Xilosa/metabolismo
13.
Metab Eng ; 25: 238-47, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25073011

RESUMEN

D-xylonate is a potential platform chemical which can be produced by engineered Saccharomyces cerevisiae strains. In order to address production constraints in more detail, we analysed the role of lactone ring opening in single cells and populations. Both D-xylono-γ-lactone and D-xylonate were produced when the Caulobacter crescentus xylB (D-xylose dehydrogenase) was expressed in S. cerevisiae, with or without co-expression of xylC (D-xylonolactonase), as seen by (1)H NMR. XylC facilitated rapid opening of the lactone and more D-xylonate was initially produced than in its absence. Using in vivo(1)H NMR analysis of cell extracts, culture media and intact cells we observed that the lactone and linear forms of D-xylonic acid were produced, accumulated intracellularly, and partially exported within 15-60min of D-xylose provision. During single-cell analysis of cells expressing the pH sensitive fluorescent probe pHluorin, pHluorin fluorescence was gradually lost from the cells during D-xylonate production, as expected for cells with decreasing intracellular pH. However, in the presence of D-xylose, only 9% of cells expressing xylB lost pHluorin fluorescence within 4.5h, whereas 99% of cells co-expressing xylB and xylC lost fluorescence, a large proportion of which also lost vitality, during this interval. Loss of vitality in the presence of D-xylose was correlated to the extracellular pH, but fluorescence was lost from xylB and xylC expressing cells regardless of the extracellular condition.


Asunto(s)
Análisis de Flujos Metabólicos/métodos , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Azúcares Ácidos/metabolismo , Xilosidasas/metabolismo , Simulación por Computador , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Transducción de Señal/fisiología
14.
AMB Express ; 4: 33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949267

RESUMEN

Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared.

15.
Yeast ; 31(6): 219-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24691985

RESUMEN

Resistance to weak organic acids is important relative to both weak organic acid preservatives and the development of inhibitor tolerant yeast as industrial production organisms. The ABC transporter Pdr12 is important for resistance to sorbic and propionic acid, but its role in tolerance to other weak organic acids with industrial relevance is not well established. In this study, yeast strains with altered expression of PDR12 and/or CMK1, a protein kinase associated with post-transcriptional negative regulation of Pdr12, were exposed to seven weak organic acids: acetic, formic, glycolic, lactic, propionic, sorbic and levulinic acid. These are widely used as preservatives, present in lignocellulosic hydrolysates or attractive as chemical precursors. Overexpression of PDR12 increased tolerance to acids with longer chain length, such as sorbic, propionic and levulinic acid, whereas deletion of PDR12 increased tolerance to the shorter acetic and formic acid. The viability of all strains decreased dramatically in acetic or propionic acid, but the Δpdr12 strains recovered more rapidly than other strains in acetic acid. Furthermore, our results indicated that Cmk1 plays a role in weak organic acid tolerance, beyond its role in regulation of Pdr12, since deletion of both Cmk1 and Pdr12 resulted in different responses to exposure to acids than were explained by deletion of Pdr12 alone.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Ácidos Carboxílicos/toxicidad , Tolerancia a Medicamentos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Eliminación de Gen , Expresión Génica , Viabilidad Microbiana/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Appl Environ Microbiol ; 79(23): 7179-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038689

RESUMEN

The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified.


Asunto(s)
Citosol/química , Citometría de Flujo/métodos , Saccharomyces cerevisiae/química , Análisis de la Célula Individual/métodos , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Concentración de Iones de Hidrógeno , Coloración y Etiquetado/métodos
17.
Biochemistry ; 52(14): 2453-60, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23506391

RESUMEN

L-Xylulose reductases belong to the superfamily of short chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent reduction of L-xylulose to xylitol in L-arabinose and glucuronic acid catabolism. Here we report the identification of a novel L-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination with a functional analysis. LXR3, a 31 kDa protein, catalyzes the reduction of L-xylulose to xylitol via NADPH and is also able to convert D-xylulose, D-ribulose, L-sorbose, and D-fructose to their corresponding polyols. Transcription of lxr3 is specifically induced by L-arabinose and L-arabitol. Deletion of lxr3 affects growth on L-arabinose and L-arabitol and reduces total NADPH-dependent LXR activity in cell free extracts. A phylogenetic analysis of known L-xylulose reductases shows that LXR3 is phylogenetically different from the Aspergillus niger L-xylulose reductase LxrA and, moreover, that all identified true L-xylulose reductases belong to different clades within the superfamily of SDRs. This indicates that the enzymes responsible for the reduction of L-xylulose in L-arabinose and glucuronic acid catabolic pathways have evolved independently and that even the fungal LXRs of the L-arabinose catabolic pathway have evolved in different clades of the superfamily of SDRs.


Asunto(s)
Arabinosa/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Trichoderma/enzimología , Eliminación de Gen , Genes Fúngicos , Filogenia , Deshidrogenasas del Alcohol de Azúcar/genética , Trichoderma/genética , Trichoderma/crecimiento & desarrollo , Trichoderma/metabolismo , Xilulosa/metabolismo
18.
Appl Environ Microbiol ; 78(24): 8676-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042175

RESUMEN

D-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass(-1)) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.


Asunto(s)
Aspergillus niger/metabolismo , Ácidos Hexurónicos/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Azúcares Ácidos/metabolismo , Trichoderma/metabolismo , Aspergillus niger/genética , Biotransformación , Medios de Cultivo/química , Eliminación de Gen , Concentración de Iones de Hidrógeno , Trichoderma/genética
19.
J Biol Chem ; 287(31): 26010-8, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22654107

RESUMEN

In addition to the well established Leloir pathway for the catabolism of d-galactose in fungi, the oxidoreductive pathway has been recently identified. In this oxidoreductive pathway, D-galactose is converted via a series of NADPH-dependent reductions and NAD(+)-dependent oxidations into D-fructose. The pathway intermediates include galactitol, L-xylo-3-hexulose, and d-sorbitol. This study identified the missing link in the pathway, the L-xylo-3-hexulose reductase that catalyzes the conversion of L-xylo-3-hexulose to D-sorbitol. In Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger, we identified the genes lxr4 and xhrA, respectively, that encode the l-xylo-3-hexulose reductases. The deletion of these genes resulted in no growth on galactitol and in reduced growth on D-galactose. The LXR4 was heterologously expressed, and the purified protein showed high specificity for L-xylo-3-hexulose with a K(m) = 2.0 ± 0.5 mm and a V(max) = 5.5 ± 1.0 units/mg. We also confirmed that the product of the LXR4 reaction is D-sorbitol.


Asunto(s)
Aspergillus niger/enzimología , Galactosa/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Trichoderma/enzimología , Aspergillus niger/crecimiento & desarrollo , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Hexosas/química , Hexosas/metabolismo , Cetosas/química , Cetosas/metabolismo , Cinética , Redes y Vías Metabólicas , NADP/química , Oxidación-Reducción , Sorbitol/metabolismo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Transcripción Genética , Trichoderma/crecimiento & desarrollo
20.
FEBS Lett ; 586(4): 378-83, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22245674

RESUMEN

In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg.


Asunto(s)
Aspergillus niger/enzimología , L-Iditol 2-Deshidrogenasa/metabolismo , Aspergillus niger/genética , Aspergillus niger/crecimiento & desarrollo , Secuencia de Bases , ADN de Hongos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactosa/metabolismo , Eliminación de Gen , Genes Fúngicos , Cinética , L-Iditol 2-Deshidrogenasa/genética , Oxidación-Reducción , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Sorbitol/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...