Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Biotechnol ; 40(9): 1378-1387, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35379961

RESUMEN

The all-protein cytosine base editor DdCBE uses TALE proteins and a double-stranded DNA-specific cytidine deaminase (DddA) to mediate targeted C•G-to-T•A editing. To improve editing efficiency and overcome the strict TC sequence-context constraint of DddA, we used phage-assisted non-continuous and continuous evolution to evolve DddA variants with improved activity and expanded targeting scope. Compared to canonical DdCBEs, base editors with evolved DddA6 improved mitochondrial DNA (mtDNA) editing efficiencies at TC by 3.3-fold on average. DdCBEs containing evolved DddA11 offered a broadened HC (H = A, C or T) sequence compatibility for both mitochondrial and nuclear base editing, increasing average editing efficiencies at AC and CC targets from less than 10% for canonical DdCBE to 15-30% and up to 50% in cell populations sorted to express both halves of DdCBE. We used these evolved DdCBEs to efficiently install disease-associated mtDNA mutations in human cells at non-TC target sites. DddA6 and DddA11 substantially increase the effectiveness and applicability of all-protein base editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Citidina Desaminasa/genética , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo
3.
Nat Biotechnol ; 39(11): 1414-1425, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34183861

RESUMEN

Programmable C•G-to-G•C base editors (CGBEs) have broad scientific and therapeutic potential, but their editing outcomes have proved difficult to predict and their editing efficiency and product purity are often low. We describe a suite of engineered CGBEs paired with machine learning models to enable efficient, high-purity C•G-to-G•C base editing. We performed a CRISPR interference (CRISPRi) screen targeting DNA repair genes to identify factors that affect C•G-to-G•C editing outcomes and used these insights to develop CGBEs with diverse editing profiles. We characterized ten promising CGBEs on a library of 10,638 genomically integrated target sites in mammalian cells and trained machine learning models that accurately predict the purity and yield of editing outcomes (R = 0.90) using these data. These CGBEs enable correction to the wild-type coding sequence of 546 disease-related transversion single-nucleotide variants (SNVs) with >90% precision (mean 96%) and up to 70% efficiency (mean 14%). Computational prediction of optimal CGBE-single-guide RNA pairs enables high-purity transversion base editing at over fourfold more target sites than achieved using any single CGBE variant.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Aprendizaje Automático , Mamíferos/genética , ARN Guía de Kinetoplastida/genética
4.
Nature ; 583(7817): 631-637, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641830

RESUMEN

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Asunto(s)
Toxinas Bacterianas/metabolismo , Citidina Desaminasa/metabolismo , ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Mitocondrias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Secuencia de Bases , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Respiración de la Célula/genética , Citidina/metabolismo , Citidina Desaminasa/química , Citidina Desaminasa/genética , Genoma Mitocondrial/genética , Células HEK293 , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación , Fosforilación Oxidativa , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/genética , Especificidad por Sustrato , Sistemas de Secreción Tipo VI/metabolismo
5.
Cell ; 182(2): 463-480.e30, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32533916

RESUMEN

Although base editors are widely used to install targeted point mutations, the factors that determine base editing outcomes are not well understood. We characterized sequence-activity relationships of 11 cytosine and adenine base editors (CBEs and ABEs) on 38,538 genomically integrated targets in mammalian cells and used the resulting outcomes to train BE-Hive, a machine learning model that accurately predicts base editing genotypic outcomes (R ≈ 0.9) and efficiency (R ≈ 0.7). We corrected 3,388 disease-associated SNVs with ≥90% precision, including 675 alleles with bystander nucleotides that BE-Hive correctly predicted would not be edited. We discovered determinants of previously unpredictable C-to-G, or C-to-A editing and used these discoveries to correct coding sequences of 174 pathogenic transversion SNVs with ≥90% precision. Finally, we used insights from BE-Hive to engineer novel CBE variants that modulate editing outcomes. These discoveries illuminate base editing, enable editing at previously intractable targets, and provide new base editors with improved editing capabilities.


Asunto(s)
Edición Génica/métodos , Aprendizaje Automático , Animales , Biblioteca de Genes , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mutación Puntual , ARN Guía de Kinetoplastida/metabolismo
6.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051099

RESUMEN

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Asunto(s)
Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , ADN/metabolismo , Endonucleasas/metabolismo , Edición Génica/métodos , Genoma , Bibliotecas de Moléculas Pequeñas , Streptococcus pyogenes/genética , Especificidad por Sustrato
7.
Adv Healthc Mater ; 5(15): 1844-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27377035

RESUMEN

Biomolecule-templated or biotemplated metal nanoclusters (NCs) are ultrasmall (<2 nm) metal (Au, Ag) particles stabilized by a certain type of biomolecular template (e.g., peptides, proteins, and DNA). Due to their unique physiochemical properties, biotemplated metal NCs have been widely used in sensing, imaging, delivery and therapy. The overwhelming applications in these individual areas imply the great promise of harnessing biotemplated metal NCs in more advanced biomedical aspects such as theranostics. Although applications of biotemplated metal NCs as theranostic agents are trending, the rational design of biomolecular templates suitable for the synthesis of multifunctional metal NCs for theranostics is comparatively underexplored. This progress report first identifies the essential attributes of biotemplated metal NCs for theranostics by reviewing the state-of-art applications in each of the four modalities of theranostics, namely sensing, imaging, delivery and therapy. To achieve high efficacy in these modalities, we elucidate the design principles underlying the use of biomolecules (proteins, peptides and nucleic acids) to control the NC size, emission color and surface chemistries for post-functionalization of therapeutic moieties. We then propose a unified strategy to engineer biomolecular templates that combine all these modalities to produce multifunctional biotemplated metal NCs that can serve as the next-generation personalized theranostic agents.


Asunto(s)
Oro , Nanopartículas del Metal , Medicina de Precisión/métodos , Plata , Nanomedicina Teranóstica/métodos , Animales , Oro/química , Oro/uso terapéutico , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Plata/química , Plata/uso terapéutico
8.
Cell Rep ; 15(3): 519-530, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27068464

RESUMEN

The bromodomain and extraterminal (BET) protein BRD4 can physically interact with the Mediator complex, but the relevance of this association to the therapeutic effects of BET inhibitors in cancer is unclear. Here, we show that BET inhibition causes a rapid release of Mediator from a subset of cis-regulatory elements in the genome of acute myeloid leukemia (AML) cells. These sites of Mediator eviction were highly correlated with transcriptional suppression of neighboring genes, which are enriched for targets of the transcription factor MYB and for functions related to leukemogenesis. A shRNA screen of Mediator in AML cells identified the MED12, MED13, MED23, and MED24 subunits as performing a similar regulatory function to BRD4 in this context, including a shared role in sustaining a block in myeloid maturation. These findings suggest that the interaction between BRD4 and Mediator has functional importance for gene-specific transcriptional activation and for AML maintenance.


Asunto(s)
Complejo Mediador/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/antagonistas & inhibidores , Animales , Azepinas/farmacología , Crisis Blástica/genética , Crisis Blástica/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genoma , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA