Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 434(16): 167711, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35777462

RESUMEN

Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended ß-strand, creating a shared ß-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.


Asunto(s)
Amiloide , Proteínas de Choque Térmico HSP27 , Cadena B de alfa-Cristalina , Amiloide/química , Disulfuros/química , Proteínas de Choque Térmico HSP27/química , Humanos , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Cadena B de alfa-Cristalina/química
2.
FEMS Microbes ; 3: xtac005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308105

RESUMEN

During the different stages of the Plasmodium life cycle, surface-associated proteins establish key interactions with the host and play critical roles in parasite survival. The 6-cysteine (6-cys) protein family is one of the most abundant surface antigens and expressed throughout the Plasmodium falciparum life cycle. This protein family is conserved across Plasmodium species and plays critical roles in parasite transmission, evasion of the host immune response and host cell invasion. Several 6-cys proteins are present on the parasite surface as hetero-complexes but it is not known how two 6-cys proteins interact together. Here, we present a crystal structure of Pf12 bound to Pf41 at 2.85 Å resolution, two P. falciparum proteins usually found on the parasite surface of late schizonts and merozoites. Our structure revealed two critical interfaces required for complex formation with important implications on how different 6-cysteine proteins may interact with each other. Using structure-function analyses, we identified important residues for Pf12-Pf41 complex formation. In addition, we generated 16 nanobodies against Pf12 and Pf41 and showed that several Pf12-specific nanobodies inhibit Pf12-Pf41 complex formation. Using X-ray crystallography, we were able to describe the structural mechanism of an inhibitory nanobody in blocking Pf12-Pf41 complex formation. Future studies using these inhibitory nanobodies will be useful to determine the functional role of these two 6-cys proteins in malaria parasites.

3.
J Mol Biol ; 433(21): 167217, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34454945

RESUMEN

Our poor understanding of the mechanism by which the peptide-hormone H2 relaxin activates its G protein coupled receptor, RXFP1 and the related receptor RXFP2, has hindered progress in its therapeutic development. Both receptors possess large ectodomains, which bind H2 relaxin, and contain an N-terminal LDLa module that is essential for receptor signaling and postulated to be a tethered agonist. Here, we show that a conserved motif (GDxxGWxxxF), C-terminal to the LDLa module, is critical for receptor activity. Importantly, this motif adopts different structures in RXFP1 and RXFP2, suggesting distinct activation mechanisms. For RXFP1, the motif is flexible, weakly associates with the LDLa module, and requires H2 relaxin binding to stabilize an active conformation. Conversely, the GDxxGWxxxF motif in RXFP2 is more closely associated with the LDLa module, forming an essential binding interface for H2 relaxin. These differences in the activation mechanism will aid drug development targeting these receptors.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores de Péptidos/química , Relaxina/química , Secuencias de Aminoácidos , Sitios de Unión , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relaxina/genética , Relaxina/metabolismo , Transducción de Señal
4.
Biochem J ; 478(13): 2555-2569, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34109974

RESUMEN

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function. Here, using biophysical techniques, we demonstrate that the SMCHD1 ATPase undergoes dimerization in a process that is dependent on both the N-terminal UBL (Ubiquitin-like) domain and ATP binding. We show that neither the dimerization event, nor the presence of a C-terminal extension past the transducer domain, affect SMCHD1's in vitro catalytic activity as the rate of ATP turnover remains comparable to the monomeric protein. We further examined the functional importance of the N-terminal UBL domain in cells, revealing that its targeted deletion disrupts the localization of full-length SMCHD1 to chromatin. These findings implicate UBL-mediated SMCHD1 dimerization as a crucial step for chromatin interaction, and thereby for promoting SMCHD1-mediated gene silencing.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Multimerización de Proteína , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Células HEK293 , Humanos , Immunoblotting , Microscopía Fluorescente , Mutación , Unión Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo , Difracción de Rayos X
5.
Nat Commun ; 11(1): 3343, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620905

RESUMEN

The expanded polyglutamine (polyQ) tract form of ataxin-1 drives disease progression in spinocerebellar ataxia type 1 (SCA1). Although known to form distinctive intranuclear bodies, the cellular pathways and processes that polyQ-ataxin-1 influences remain poorly understood. Here we identify the direct and proximal partners constituting the interactome of ataxin-1[85Q] in Neuro-2a cells, pathways analyses indicating a significant enrichment of essential nuclear transporters, pointing to disruptions in nuclear transport processes in the presence of elevated levels of ataxin-1. Our direct assessments of nuclear transporters and their cargoes confirm these observations, revealing disrupted trafficking often with relocalisation of transporters and/or cargoes to ataxin-1[85Q] nuclear bodies. Analogous changes in importin-ß1, nucleoporin 98 and nucleoporin 62 nuclear rim staining are observed in Purkinje cells of ATXN1[82Q] mice. The results highlight a disruption of multiple essential nuclear protein trafficking pathways by polyQ-ataxin-1, a key contribution to furthering understanding of pathogenic mechanisms initiated by polyQ tract proteins.


Asunto(s)
Ataxina-1/metabolismo , Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Células de Purkinje/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Ataxina-1/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HeLa , Humanos , Ratones , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Péptidos/genética , Unión Proteica , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Expansión de Repetición de Trinucleótido/genética
6.
J Biol Chem ; 295(29): 9838-9854, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32417755

RESUMEN

Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones that inhibit amyloid fibril formation; however, their mechanisms of action remain poorly understood. sHSPs comprise a conserved α-crystallin domain flanked by variable N- and C-terminal regions. To investigate the functional contributions of these three regions, we compared the chaperone activities of various constructs of human αB-crystallin (HSPB5) and heat-shock 27-kDa protein (Hsp27, HSPB1) during amyloid formation by α-synuclein and apolipoprotein C-II. Using an array of approaches, including thioflavin T fluorescence assays and sedimentation analysis, we found that the N-terminal region of Hsp27 and the terminal regions of αB-crystallin are important for delaying amyloid fibril nucleation and for disaggregating mature apolipoprotein C-II fibrils. We further show that the terminal regions are required for stable fibril binding by both sHSPs and for mediating lateral fibril-fibril association, which sequesters preformed fibrils into large aggregates and is believed to have a cytoprotective function. We conclude that although the isolated α-crystallin domain retains some chaperone activity against amyloid formation, the flanking domains contribute additional and important chaperone activities, both in delaying amyloid formation and in mediating interactions of sHSPs with amyloid aggregates. Both these chaperone activities have significant implications for the pathogenesis and progression of diseases associated with amyloid deposition, such as Parkinson's and Alzheimer's diseases.


Asunto(s)
Amiloide/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Cadena B de alfa-Cristalina/química , Amiloide/metabolismo , Apolipoproteína C-II/química , Apolipoproteína C-II/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Dominios Proteicos , Cadena B de alfa-Cristalina/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
7.
Biochem J ; 476(21): 3369-3383, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31696211

RESUMEN

4-hydroxy-2-oxoglutarate aldolase (HOGA1) is a mitochondrial enzyme that plays a gatekeeper role in hydroxyproline metabolism. Its loss of function in humans causes primary hyperoxaluria type 3 (PH3), a rare condition characterised by excessive production of oxalate. In this study, we investigated the significance of the associated oxaloacetate decarboxylase activity which is also catalysed by HOGA1. Kinetic studies using the recombinant human enzyme (hHOGA1) and active site mutants showed both these dual activities utilise the same catalytic machinery with micromolar substrate affinities suggesting that both are operative in vivo. Biophysical and structural studies showed that pyruvate was a competitive inhibitor with an inhibition constant in the micromolar range. By comparison α-ketoglutarate was a weak inhibitor with an inhibition constant in the millimolar range and could only be isolated as an adduct with the active site Lys196 in the presence of sodium borohydride. These studies suggest that pyruvate inhibits HOGA1 activity during gluconeogenesis. We also propose that loss of HOGA1 function could increase oxalate production in PH3 by decreasing pyruvate availability and metabolic flux through the Krebs cycle.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Hiperoxaluria Primaria/enzimología , Ácidos Cetoglutáricos/metabolismo , Oxo-Ácido-Liasas/metabolismo , Ácido Pirúvico/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/química , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/metabolismo , Ácidos Cetoglutáricos/química , Cinética , Oxo-Ácido-Liasas/química , Oxo-Ácido-Liasas/genética , Ácido Pirúvico/química
8.
Cell Rep ; 29(7): 1934-1945.e8, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722208

RESUMEN

To evade immunity, many viruses express interferon antagonists that target STAT transcription factors as a major component of pathogenesis. Because of a lack of direct structural data, these interfaces are poorly understood. We report the structural analysis of full-length STAT1 binding to an interferon antagonist of a human pathogenic virus. The interface revealed by transferred cross-saturation NMR is complex, involving multiple regions in both the viral and cellular proteins. Molecular mapping analysis, combined with biophysical characterization and in vitro/in vivo functional assays, indicates that the interface is significant in disease caused by a pathogenic field-strain lyssavirus, with critical roles for contacts between the STAT1 coiled-coil/DNA-binding domains and specific regions within the viral protein. These data elucidate the potentially complex nature of IFN antagonist/STAT interactions, and the spatial relationship of protein interfaces that mediate immune evasion and replication, providing insight into how viruses can regulate these essential functions via single multifunctional proteins.


Asunto(s)
Inmunidad Innata , Lyssavirus , Factor de Transcripción STAT1 , Animales , Células COS , Chlorocebus aethiops , Femenino , Células HEK293 , Humanos , Lyssavirus/química , Lyssavirus/inmunología , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología
9.
Nat Commun ; 9(1): 3732, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30213934

RESUMEN

Conjugation is fundamental for the acquisition of new genetic traits and the development of antibiotic resistance in pathogenic organisms. Here, we show that a hypothetical Clostridium perfringens protein, TcpK, which is encoded by the tetracycline resistance plasmid pCW3, is essential for efficient conjugative DNA transfer. Our studies reveal that TcpK is a member of the winged helix-turn-helix (wHTH) transcription factor superfamily and that it forms a dimer in solution. Furthermore, TcpK specifically binds to a nine-nucleotide sequence that is present as tandem repeats within the pCW3 origin of transfer (oriT). The X-ray crystal structure of the TcpK-TcpK box complex reveals a binding mode centered on and around the ß-wing, which is different from what has been previously shown for other wHTH proteins. Structure-guided mutagenesis experiments validate the specific interaction between TcpK and the DNA molecule. Additional studies highlight that the TcpK dimer is important for specific DNA binding.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X , ADN Bacteriano/química , Farmacorresistencia Microbiana/genética , Plásmidos/química , Proteínas Bacterianas/genética , Clostridium perfringens , Conjugación Genética , ADN Bacteriano/genética , Bases de Datos de Proteínas , Escherichia coli , Prueba de Complementación Genética , Mutagénesis , Nucleótidos/química , Plásmidos/genética , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie , Tetraciclina/farmacología , Resistencia a la Tetraciclina/genética
10.
J Neurochem ; 147(3): 409-428, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30091236

RESUMEN

The Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities. As such, LRRK2 GTPase domain was predicted to be a GAD. Herein, we describe the design and high-level expression of human LRRK2 Roc-COR domain (LRRK2 Roc-COR). Biochemical analyses of LRRK2 Roc-COR reveal that it forms homodimers, with the C-terminal portion of COR mediating its dimerization. Furthermore, it co-purifies and binds Mg2+ GTP/GDP at 1 : 1 stoichiometry, and it hydrolyzes GTP with Km  and kcat  of 22 nM and 4.70 × 10-4  min-1 ,  respectively. Thus, even though LRRK2 Roc-COR forms GAD-like homodimers, it exhibits conventional Ras-like GTPase properties, with high-affinity binding of Mg2+ -GTP/GDP and low intrinsic catalytic activity. The PD-causative Y1699C mutation mapped to the COR domain was previously reported to reduce the GTPase activity of full-length LRRK2. In contrast, this mutation induces no change in the GTPase activity, and only slight perturbations in the secondary structure contents of LRRK2 Roc-COR. As this mutation does not directly affect the GTPase activity of the isolated Roc-COR tandem, it is possible that the effects of this mutation on full-length LRRK2 occur via other functional domains. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Asunto(s)
GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Genes ras/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Animales , Dimerización , Escherichia coli , Regulación Enzimológica de la Expresión Génica/genética , Nucleótidos de Guanina/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Magnesio/metabolismo , Ratones , Mutación/genética , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Multimerización de Proteína , Estructura Secundaria de Proteína/genética , Proteínas Recombinantes , Proteína de Unión al GTP rac1/biosíntesis , Proteína de Unión al GTP rac1/genética
11.
Nature ; 559(7712): 135-139, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950717

RESUMEN

Plasmodium vivax is the most widely distributed malaria parasite that infects humans1. P. vivax invades reticulocytes exclusively, and successful entry depends on specific interactions between the P. vivax reticulocyte-binding protein 2b (PvRBP2b) and transferrin receptor 1 (TfR1)2. TfR1-deficient erythroid cells are refractory to invasion by P. vivax, and anti-PvRBP2b monoclonal antibodies inhibit reticulocyte binding and block P. vivax invasion in field isolates2. Here we report a high-resolution cryo-electron microscopy structure of a ternary complex of PvRBP2b bound to human TfR1 and transferrin, at 3.7 Å resolution. Mutational analyses show that PvRBP2b residues involved in complex formation are conserved; this suggests that antigens could be designed that act across P. vivax strains. Functional analyses of TfR1 highlight how P. vivax hijacks TfR1, an essential housekeeping protein, by binding to sites that govern host specificity, without affecting its cellular function of transporting iron. Crystal and solution structures of PvRBP2b in complex with antibody fragments characterize the inhibitory epitopes. Our results establish a structural framework for understanding how P. vivax reticulocyte-binding protein engages its receptor and the molecular mechanism of inhibitory monoclonal antibodies, providing important information for the design of novel vaccine candidates.


Asunto(s)
Microscopía por Crioelectrón , Plasmodium vivax/química , Plasmodium vivax/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/ultraestructura , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD/ultraestructura , Sitios de Unión , Humanos , Vacunas contra la Malaria/inmunología , Modelos Moleculares , Mutación , Plasmodium vivax/citología , Plasmodium vivax/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Receptores de Transferrina/química , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Receptores de Transferrina/ultraestructura , Reticulocitos/metabolismo , Relación Estructura-Actividad , Transferrina/química , Transferrina/metabolismo , Transferrina/ultraestructura
12.
J Struct Biol ; 203(3): 205-218, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885491

RESUMEN

Apolipoprotein-D is a 25 kDa glycosylated member of the lipocalin family that folds into an eight-stranded ß-barrel with a single adjacent α-helix. Apolipoprotein-D specifically binds a range of small hydrophobic ligands such as progesterone and arachidonic acid and has an antioxidant function that is in part due to the reduction of peroxidised lipids by methionine-93. Therefore, apolipoprotein-D plays multiple roles throughout the body and is protective in Alzheimer's disease, where apolipoprotein-D overexpression reduces the amyloid-ß burden in Alzheimer's disease mouse models. Oligomerisation is a common feature of lipocalins that can influence ligand binding. The native structure of apolipoprotein-D, however, has not been conclusively defined. Apolipoprotein-D is generally described as a monomeric protein, although it dimerises when reducing peroxidised lipids. Here, we investigated the native structure of apolipoprotein-D derived from plasma, breast cyst fluid (BCF) and cerebrospinal fluid. In plasma and cerebrospinal fluid, apolipoprotein-D was present in high-molecular weight complexes, potentially in association with lipoproteins. In contrast, apolipoprotein-D in BCF formed distinct oligomeric species. We assessed apolipoprotein-D oligomerisation using native apolipoprotein-D purified from BCF and a suite of complementary methods, including multi-angle laser light scattering, analytical ultracentrifugation and small-angle X-ray scattering. Our analyses showed that apolipoprotein-D predominantly forms a ∼95 to ∼100 kDa tetramer. Small-angle X-ray scattering analysis confirmed these findings and provided a structural model for apolipoprotein-D tetramer. These data indicate apolipoprotein-D rarely exists as a free monomer under physiological conditions and provide insights into novel native structures of apolipoprotein-D and into oligomerisation behaviour in the lipocalin family.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas D/química , Conformación Proteica , Multimerización de Proteína , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Animales , Apolipoproteínas D/líquido cefalorraquídeo , Apolipoproteínas D/genética , Quiste Mamario/química , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Ligandos , Lipocalinas/química , Ratones , Unión Proteica , Dispersión del Ángulo Pequeño
13.
FEBS J ; 285(15): 2799-2812, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29791776

RESUMEN

Human apolipoprotein (apo) C-II is one of several plasma apolipoproteins that form amyloid deposits in vivo and is an independent risk factor for cardiovascular disease. Lipid-free apoC-II readily self-assembles into twisted-ribbon amyloid fibrils but forms straight, rod-like amyloid fibrils in the presence of low concentrations of micellar phospholipids. Charge mutations exerted significantly different effects on rod-like fibril formation compared to their effects on twisted-ribbon fibril formation. For instance, the double mutant, K30D-D69K apoC-II, readily formed twisted-ribbon fibrils, while the rate of rod-like fibril formation in the presence of micellar phospholipid was negligible. Structural analysis of rod-like apoC-II fibrils, using hydrogen-deuterium exchange and NMR analysis showed exchange protection consistent with a core cross-ß structure comprising the C-terminal 58-76 region. Molecular dynamics simulations of fibril arrangements for this region favoured a parallel cross-ß structure. X-ray fibre diffraction data for aligned rod-like fibrils showed a major meridional spacing at 4.6 Å and equatorial spacings at 9.7, 23.8 and 46.6 Å. The latter two equatorial spacings are not observed for aligned twisted-ribbon fibrils and are predicted for a model involving two cross-ß fibrils in an off-set antiparallel structure with four apoC-II units per rise of the ß-sheet. This model is consistent with the mutational effects on rod-like apoC-II fibril formation. The lipid-dependent polymorphisms exhibited by apoC-II fibrils could determine the properties of apoC-II in renal amyloid deposits and their potential role in the development of cardiovascular disease.


Asunto(s)
Amiloide/química , Apolipoproteína C-II/química , Apolipoproteína C-II/genética , Mutación , Acrilamida/química , Amiloide/metabolismo , Apolipoproteína C-II/metabolismo , Enfermedades Cardiovasculares/genética , Medición de Intercambio de Deuterio , Humanos , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Difracción de Rayos X
14.
Cell Death Differ ; 25(9): 1567-1580, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29445128

RESUMEN

The programmed cell death pathway, necroptosis, relies on the pseudokinase, Mixed Lineage Kinase domain-Like (MLKL), for cellular execution downstream of death receptor or Toll-like receptor ligation. Receptor-interacting protein kinase-3 (RIPK3)-mediated phosphorylation of MLKL's pseudokinase domain leads to MLKL switching from an inert to activated state, where exposure of the N-terminal four-helix bundle (4HB) 'executioner' domain leads to cell death. The precise molecular details of MLKL activation, including the stoichiometry of oligomer assemblies, mechanisms of membrane translocation and permeabilisation, remain a matter of debate. Here, we dissect the function of the two 'brace' helices that connect the 4HB to the pseudokinase domain of MLKL. In addition to establishing that the integrity of the second brace helix is crucial for the assembly of mouse MLKL homotrimers and cell death, we implicate the brace helices as a device to communicate pseudokinase domain phosphorylation event(s) to the N-terminal executioner 4HB domain. Using mouse:human MLKL chimeras, we defined the first brace helix and adjacent loop as key elements of the molecular switch mechanism that relay pseudokinase domain phosphorylation to the activation of the 4HB domain killing activity. In addition, our chimera data revealed the importance of the pseudokinase domain in conferring host specificity on MLKL killing function, where fusion of the mouse pseudokinase domain converted the human 4HB + brace from inactive to a constitutive killer of mouse fibroblasts. These findings illustrate that the brace helices play an active role in MLKL regulation, rather than simply acting as a tether between the 4HB and pseudokinase domains.


Asunto(s)
Apoptosis , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Doxiciclina , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Necrosis , Fosforilación , Dominios Proteicos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Ultracentrifugación , Difracción de Rayos X
15.
Science ; 359(6371): 48-55, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29302006

RESUMEN

Plasmodium vivax shows a strict host tropism for reticulocytes. We identified transferrin receptor 1 (TfR1) as the receptor for P. vivax reticulocyte-binding protein 2b (PvRBP2b). We determined the structure of the N-terminal domain of PvRBP2b involved in red blood cell binding, elucidating the molecular basis for TfR1 recognition. We validated TfR1 as the biological target of PvRBP2b engagement by means of TfR1 expression knockdown analysis. TfR1 mutant cells deficient in PvRBP2b binding were refractory to invasion of P. vivax but not to invasion of P. falciparum Using Brazilian and Thai clinical isolates, we show that PvRBP2b monoclonal antibodies that inhibit reticulocyte binding also block P. vivax entry into reticulocytes. These data show that TfR1-PvRBP2b invasion pathway is critical for the recognition of reticulocytes during P. vivax invasion.


Asunto(s)
Antígenos CD/metabolismo , Malaria Vivax/metabolismo , Malaria Vivax/parasitología , Proteínas de la Membrana/química , Plasmodium vivax/patogenicidad , Proteínas Protozoarias/química , Receptores de Transferrina/metabolismo , Reticulocitos/parasitología , Antígenos CD/genética , Cristalografía por Rayos X , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Parásitos , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Plasmodium vivax/metabolismo , Dominios Proteicos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura , Receptores de Transferrina/genética
16.
Proc Natl Acad Sci U S A ; 113(2): E191-200, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715754

RESUMEN

Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short ß-hairpin, and, although the structural fold is similar to that of PfRh5--the essential invasion ligand in Plasmodium falciparum--its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection.


Asunto(s)
Secuencia Conservada , Eritrocitos/metabolismo , Plasmodium vivax/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Área Bajo la Curva , Secuencia de Bases , Cristalografía por Rayos X , Evolución Molecular , Frecuencia de los Genes , Genes Protozoarios , Haplotipos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium vivax/genética , Polimorfismo de Nucleótido Simple/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Dispersión del Ángulo Pequeño , Alineación de Secuencia
17.
Methods Enzymol ; 562: 241-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26412655

RESUMEN

Amyloid fibrils result from the self-assembly of proteins into large aggregates with fibrillar morphology and common structural features. These fibrils form the major component of amyloid plaques that are associated with a number of common and debilitating diseases, including Alzheimer's disease. While a range of unrelated proteins and peptides are known to form amyloid fibrils, a common feature is the formation of aggregates of various sizes, including mature fibrils of differing length and/or structural morphology, small oligomeric precursors, and other less well-understood forms such as amorphous aggregates. These various species can possess distinct biochemical, biophysical, and pathological properties. Sedimentation velocity analysis can characterize amyloid fibril formation in exceptional detail, providing a particularly useful method for resolving the complex heterogeneity present in amyloid systems. In this chapter, we describe analytical methods for accurate quantification of both total amyloid fibril formation and the formation of distinct amyloid structures based on differential sedimentation properties. We also detail modern analytical ultracentrifugation methods to determine the size distribution of amyloid aggregates. We illustrate examples of the use of these techniques to provide biophysical and structural information on amyloid systems that would otherwise be difficult to obtain.


Asunto(s)
Amiloide/aislamiento & purificación , Amiloide/química , Amiloide/ultraestructura , Apolipoproteína C-II/química , Apolipoproteína C-II/aislamiento & purificación , Apolipoproteína C-II/ultraestructura , Humanos , Proteína Huntingtina , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/aislamiento & purificación , Proteínas del Tejido Nervioso/ultraestructura , Tamaño de la Partícula , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Ultracentrifugación
19.
Adv Exp Med Biol ; 855: 157-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26149930

RESUMEN

Apolipoproteins are a key component of lipid transport in the circulatory system and share a number of structural features that facilitate this role. When bound to lipoprotein particles, these proteins are relatively stable. However, in the absence of lipids they display conformational instability and a propensity to aggregate into amyloid fibrils. Apolipoprotein C-II (apoC-II) is a member of the apolipoprotein family that has been well characterised in terms of its misfolding and aggregation. In the absence of lipid, and at physiological ionic strength and pH, apoC-II readily forms amyloid fibrils with a twisted ribbon-like morphology that are amenable to a range of biophysical and structural analyses. Consistent with its lipid binding function, the misfolding and aggregation of apoC-II are substantially affected by the presence of lipid. Short-chain phospholipids at submicellar concentrations significantly accelerate amyloid formation by inducing a tetrameric form of apoC-II that can nucleate fibril aggregation. Conversely, phospholipid micelles and bilayers inhibit the formation of apoC-II ribbon-type fibrils, but induce slow formation of amyloid with a distinct straight fibril morphology. Our studies of the effects of lipid at each stage of amyloid formation, detailed in this chapter, have revealed complex behaviour dependent on the chemical nature of the lipid molecule, its association state, and the protein:lipid ratio.


Asunto(s)
Amiloide/metabolismo , Apolipoproteína C-II/metabolismo , Lípidos/fisiología , Pliegue de Proteína , Apolipoproteína C-II/química , Cinética , Micelas , Conformación Proteica
20.
Biochemistry ; 54(24): 3831-8, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26021642

RESUMEN

Protein misfolding and aggregation, leading to amyloid fibril formation, are characteristic of many devastating and debilitating amyloid diseases. Accordingly, there is significant interest in the mechanisms underlying amyloid fibril formation and identification of possible intervention tools. Small molecule drug compounds approved for human use or for use in phase I-III clinical trials were investigated for their effects on amyloid formation by human apolipoprotein (apo) C-II. Several of these compounds modulated the rate of amyloid formation by apoC-II. Epigallocatechin gallate (EGCG), a green tea catechin, was an effective inhibitor of apoC-II fibril formation, and the antipsychotic drug, fluphenazine·HCl, was a potent activator. Both EGCG and fluphenazine·HCl exerted concentration-dependent effects on the rate of fibril formation, bound to apoC-II fibrils with high affinity, and competitively reduced thioflavin T binding. EGCG significantly altered the size distribution of fibrils, most likely by promoting the lateral association of fibrils and subsequent formation of large aggregates. Fluphenazine·HCl did not significantly alter the size distribution of fibrils, but it may induce the formation of a small population of rod-like fibrils that differ from the characteristic ribbon-like fibrils normally observed for apoC-II. The findings of this study emphasize the effects of small molecule drugs on the kinetics of amyloid fibril formation and their roles in determining fibril structure and aggregate size.


Asunto(s)
Amiloide/efectos de los fármacos , Antipsicóticos/farmacología , Apolipoproteína C-II/química , Catequina/análogos & derivados , Drogas en Investigación/farmacología , Flufenazina/farmacología , Fármacos Neuroprotectores/farmacología , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestructura , Antipsicóticos/efectos adversos , Apolipoproteína C-II/genética , Apolipoproteína C-II/metabolismo , Apolipoproteína C-II/ultraestructura , Benzotiazoles , Unión Competitiva , Catequina/farmacología , Catequina/uso terapéutico , Descubrimiento de Drogas , Drogas en Investigación/efectos adversos , Drogas en Investigación/uso terapéutico , Flufenazina/efectos adversos , Humanos , Cinética , Microscopía Electrónica de Transmisión , Fármacos Neuroprotectores/uso terapéutico , Tamaño de la Partícula , Agregado de Proteínas/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Deficiencias en la Proteostasis/inducido químicamente , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Bibliotecas de Moléculas Pequeñas , Tiazoles/antagonistas & inhibidores , Tiazoles/metabolismo , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...