Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420898

RESUMEN

Wireless Sensor Networks (WSNs) have been adopted in various environmental pollution monitoring applications. As an important environmental field, water quality monitoring is a vital process to ensure the sustainable, important feeding of and as a life-maintaining source for many living creatures. To conduct this process efficiently, the integration of lightweight machine learning technologies can extend its efficacy and accuracy. WSNs often suffer from energy-limited devices and resource-affected operations, thus constraining WSNs' lifetime and capability. Energy-efficient clustering protocols have been introduced to tackle this challenge. The low-energy adaptive clustering hierarchy (LEACH) protocol is widely used due to its simplicity and ability to manage large datasets and prolong network lifetime. In this paper, we investigate and present a modified LEACH-based clustering algorithm in conjunction with a K-means data clustering approach to enable efficient decision making based on water-quality-monitoring-related operations. This study is operated based on the experimental measurements of lanthanide oxide nanoparticles, selected as cerium oxide nanoparticles (ceria NPs), as an active sensing host for the optical detection of hydrogen peroxide pollutants via a fluorescence quenching mechanism. A mathematical model is proposed for the K-means LEACH-based clustering algorithm for WSNs to analyze the quality monitoring process in water, where various levels of pollutants exist. The simulation results show the efficacy of our modified K-means-based hierarchical data clustering and routing in prolonging network lifetime when operated in static and dynamic contexts.


Asunto(s)
Monitoreo del Ambiente , Aprendizaje Automático no Supervisado , Análisis por Conglomerados , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Nanopartículas , Simulación por Computador , Contaminantes Ambientales/análisis
2.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112416

RESUMEN

Autonomous driving of higher automation levels asks for optimal execution of critical maneuvers in all environments. A crucial prerequisite for such optimal decision-making instances is accurate situation awareness of automated and connected vehicles. For this, vehicles rely on the sensory data captured from onboard sensors and information collected through V2X communication. The classical onboard sensors exhibit different capabilities and hence a heterogeneous set of sensors is required to create better situation awareness. Fusion of the sensory data from such a set of heterogeneous sensors poses critical challenges when it comes to creating an accurate environment context for effective decision-making in AVs. Hence this exclusive survey analyses the influence of mandatory factors like data pre-processing preferably data fusion along with situation awareness toward effective decision-making in the AVs. A wide range of recent and related articles are analyzed from various perceptive, to pick the major hiccups, which can be further addressed to focus on the goals of higher automation levels. A section of the solution sketch is provided that directs the readers to the potential research directions for achieving accurate contextual awareness. To the best of our knowledge, this survey is uniquely positioned for its scope, taxonomy, and future directions.

3.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904836

RESUMEN

Advances in nanotechnology have enabled the creation of novel materials with specific electrical and physical characteristics. This leads to a significant development in the industry of electronics that can be applied in various fields. In this paper, we propose a fabrication of nanotechnology-based materials that can be used to design stretchy piezoelectric nanofibers for energy harvesting to power connected bio-nanosensors in a Wireless Body Area Network (WBAN). The bio-nanosensors are powered based on harvested energy from mechanical movements of the body, specifically the arms, joints, and heartbeats. A suite of these nano-enriched bio-nanosensors can be used to form microgrids for a self-powered wireless body area network (SpWBAN), which can be used in various sustainable health monitoring services. A system model for an SpWBAN with an energy harvesting-based medium access control protocol is presented and analyzed based on fabricated nanofibers with specific characteristics. The simulation results show that the SpWBAN outperforms and has a longer lifetime than contemporary WBAN system designs without self-powering capability.


Asunto(s)
Electrónica , Nanotecnología , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...