Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474016

RESUMEN

p.Asn1303Lys (N1303K) is a common missense variant of the CFTR gene, causing cystic fibrosis (CF). In this study, we initially evaluated the influence of CFTR modulators on the restoration of N1303K-CFTR function using intestinal organoids derived from four CF patients expressing the N1303K variant. The forskolin-induced swelling assay in organoids offered valuable insights about the beneficial effects of VX-770 + VX-661 + VX-445 (Elexacaftor + Tezacaftor + Ivacaftor, ETI) on N1303K-CFTR function restoration and about discouraging the prescription of VX-770 + VX-809 (Ivacaftor + Lumacaftor) or VX-770 + VX-661 (Ivacaftor + Tezacaftor) therapy for N1303K/class I patients. Then, a comprehensive assessment was conducted on an example of one patient with the N1303K/class I genotype to examine the ETI effect on the restoration of N1303K-CFTR function using in vitro the patient's intestinal organoids, ex vivo the intestinal current measurements (ICM) method and assessment of the clinical status before and after targeted therapy. All obtained results are consistent with each other and have proven the effectiveness of ETI for the N1303K variant. ETI produced a significant positive effect on forskolin-induced swelling in N1303K/class I organoids indicating functional improvement of the CFTR protein; ICM demonstrated that ETI therapy restored CFTR function in the intestinal epithelium after three months of treatment, and the patient improved his clinical status and lung function, increased his body mass index (BMI) and reduced the lung pathogenic flora diversity, surprisingly without improving the sweat test results.


Asunto(s)
Aminofenoles , Aminopiridinas , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Quinolonas , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Colforsina/uso terapéutico , Mutación , Fibrosis Quística/genética , Benzodioxoles/farmacología
2.
J Pers Med ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392563

RESUMEN

Complex alleles (CAs) arise when two or more nucleotide variants are present on a single allele. CAs of the CFTR gene complicate the cystic fibrosis diagnosis process, classification of pathogenic variants, and determination of the clinical picture of the disease and increase the need for additional studies to determine their pathogenicity and modulatory effect in response to targeted therapy. For several different populations around the world, characteristic CAs of the CFTR gene have been discovered, although in general the prevalence and pathogenicity of CAs have not been sufficiently studied. This review presents examples of using intestinal organoid models for assessments of the two most common and two rare CFTR CAs in individuals with cystic fibrosis in Russia.

3.
Genes (Basel) ; 14(9)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37761847

RESUMEN

The intricate nature of complex alleles presents challenges in the classification of CFTR gene mutations, encompassing potential disease-causing, neutral, or treatment-modulating effects. Notably, the complex allele [E217G;G509D] remains absent from international databases, with its pathogenicity yet to be established. Assessing the functionality of apical membrane ion channels in intestinal epithelium employed the intestinal current measurements (ICM) method, using rectal biopsy material. The effectivity of CFTR-targeted therapy was evaluated using a model of intestinal organoids of a patient harboring the genotype F508del/[E217G;G509D]. ICM analysis revealed diminished chloride channel function. Remarkably, [E217G;G509D] presence within intestinal organoids correlated with heightened residual CFTR function. Employing CFTR modulators facilitated the restoration of the functional CFTR protein. This multifaceted study intertwines genetic investigations, functional analyses, and therapeutic interventions, shedding light on the intricate interplay of complex alleles within CFTR mutations. The results highlight the potential of targeted CFTR modulators to restore functional integrity, offering promise for advancing precision treatments in cystic fibrosis management.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Alelos , Canales de Cloruro , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...