Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674104

RESUMEN

ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Pliegue de Proteína , Transporte de Proteínas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Humanos , Pliegue de Proteína/efectos de los fármacos , Células HEK293 , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436085

RESUMEN

P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.


Asunto(s)
Adenosina Trifosfatasas , Simulación por Computador , Enfermedades Genéticas Congénitas , Mutación , Proteínas de Transferencia de Fosfolípidos , Humanos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Ataxia Cerebelosa/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/enzimología , Aparato de Golgi/metabolismo , Células HEK293 , Discapacidad Intelectual/genética , Mutación/genética , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Estabilidad Proteica , Transporte de Proteínas
3.
Am J Hematol ; 98(12): 1877-1887, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37671681

RESUMEN

Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.


Asunto(s)
Anemia Hemolítica Congénita , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Células HEK293 , Eritrocitos/metabolismo , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Fosfolípidos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
4.
J Transl Med ; 21(1): 546, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587475

RESUMEN

BACKGROUND: ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect. Upon the identification of a STGD1 proband carrying a novel exon 17 canonical splice site variant, the activity of ABCA4 lacking 22 amino acids encoded by exon 17 was examined, followed by design of AONs able to induce exon 17 skipping. METHODS: A STGD1 proband was compound heterozygous for the splice variant c.2653+1G>A, that was predicted to result in in-frame skipping of exon 17, and a null variant [c.735T>G, p.(Tyr245*)]. Clinical characteristics of this proband were studied using multi-modal imaging and complete ophthalmological examination. The aberrant splicing of c.2653+1G>A was investigated in vitro in HEK293T cells with wild-type and mutant midigenes. The residual activity of the mutant ABCA4 protein lacking Asp864-Gly885 encoded by exon 17 was analyzed with all-trans-retinal-activated ATPase activity assay, along with its subcellular localization. To induce exon 17 skipping, the effect of 40 AONs was examined in vitro in WT WERI-Rb-1 cells and 3D human retinal organoids. RESULTS: Late onset STGD1 in the proband suggests that c.2653+1G>A does not have a fully deleterious effect. The in vitro splice assay confirmed that this variant leads to ABCA4 transcripts without exon 17. ABCA4 Asp864_Gly863del was stable and retained 58% all-trans-retinal-activated ATPase activity compared to WT ABCA4. This sequence is located in an unstructured linker region between transmembrane domain 6 and nucleotide-binding domain-1 of ABCA4. AONs were designed to possibly reduce pathogenicity of severe variants harbored in exon 17. The best AON achieved 59% of exon 17 skipping in retinal organoids. CONCLUSIONS: Exon 17 deletion in ABCA4 does not result in the absence of protein activity and does not cause a severe STGD1 phenotype when in trans with a null allele. By applying AONs, the effect of severe variants in exon 17 can potentially be ameliorated by exon skipping, thus generating partial ABCA4 activity in STGD1 patients.


Asunto(s)
Adenosina Trifosfatasas , Retinaldehído , Humanos , Enfermedad de Stargardt/genética , Células HEK293 , Exones/genética , Proteínas Mutantes , Transportadoras de Casetes de Unión a ATP/genética
5.
J Biol Chem ; 299(5): 104614, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931393

RESUMEN

N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40 to 60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine and N-retinylidene-taurine, respectively, but at significantly lower levels. N-retinylidene-phosphatidylserine is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.


Asunto(s)
Fosfolípidos , Enfermedad de Stargardt , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Fosfatidilserinas , Retinoides/metabolismo , Enfermedad de Stargardt/metabolismo
6.
FEBS Lett ; 597(4): 495-503, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35945663

RESUMEN

ATP8A2 is a mammalian P4-ATPase (flippase) that translocates the negatively charged lipid substrate phosphatidylserine from the exoplasmic leaflet to the cytoplasmic leaflet of cellular membranes. Using an electrophysiological method based on solid supported membranes, we investigated the electrogenicity of specific reaction steps of ATP8A2 and explored a potential phospholipid translocation pathway involving residues with positively charged side chains. Changes to the current signals caused by mutations show that the main electrogenic event occurs in connection with the release of the bound phosphatidylserine to the cytoplasmic leaflet and support the hypothesis that the phospholipid interacts with specific lysine and arginine residues near the cytoplasmic border of the lipid bilayer during the translocation and reorientation required for insertion into the cytoplasmic leaflet.


Asunto(s)
Adenosina Trifosfatasas , Fosfatidilserinas , Animales , Fosfatidilserinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Transporte Biológico , Fosfolípidos/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(32): e2121225119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914143

RESUMEN

G protein-coupled receptor (GPCR) signaling is ubiquitous. As an archetype of this signaling motif, rod phototransduction has provided many fundamental, quantitative details, including a dogma that one active GPCR molecule activates a substantial number of downstream G protein/enzyme effector complexes. However, rod phototransduction is light-activated, whereas GPCR pathways are predominantly ligand-activated. Here, we report a detailed study of the ligand-triggered GPCR pathway in mammalian olfactory transduction, finding that an odorant-receptor molecule when (one-time) complexed with its most effective odorants produces on average much less than one downstream effector. Further experiments gave a nominal success probability of tentatively ∼10-4 (more conservatively, ∼10-2 to ∼10-5). This picture is potentially more generally representative of GPCR signaling than is rod phototransduction, constituting a paradigm shift.


Asunto(s)
Ligandos , Odorantes , Receptores Acoplados a Proteínas G , Receptores Odorantes , Transducción de Señal , Olfato , Animales , Fototransducción , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Células Fotorreceptoras Retinianas Bastones
8.
Prog Retin Eye Res ; 89: 101036, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34954332

RESUMEN

ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Retinoides , Enfermedad de Stargardt , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Mutación , Retinoides/metabolismo , Enfermedad de Stargardt/genética
9.
Nat Commun ; 12(1): 5902, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625547

RESUMEN

ABCA4 is an ATP-binding cassette (ABC) transporter that flips N-retinylidene-phosphatidylethanolamine (N-Ret-PE) from the lumen to the cytoplasmic leaflet of photoreceptor membranes. Loss-of-function mutations cause Stargardt disease (STGD1), a macular dystrophy associated with severe vision loss. To define the mechanisms underlying substrate binding and STGD1, we determine the cryo-EM structure of ABCA4 in its substrate-free and bound states. The two structures are similar and delineate an elongated protein with the two transmembrane domains (TMD) forming an outward facing conformation, extended and twisted exocytoplasmic domains (ECD), and closely opposed nucleotide binding domains. N-Ret-PE is wedged between the two TMDs and a loop from ECD1 within the lumen leaflet consistent with a lateral access mechanism and is stabilized through hydrophobic and ionic interactions with residues from the TMDs and ECDs. Our studies provide a framework for further elucidating the molecular mechanism associated with lipid transport and disease and developing promising disease interventions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Microscopía por Crioelectrón/métodos , Enfermedad de Stargardt/metabolismo , Sitios de Unión , Transporte Biológico , Células HEK293 , Humanos , Degeneración Macular/genética , Mutación , Fosfatidiletanolaminas , Dominios Proteicos , Retinoides , Enfermedad de Stargardt/genética
10.
EMBO J ; 40(21): e107915, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34585770

RESUMEN

Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an "eat me" signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.


Asunto(s)
Proteínas de la Membrana/genética , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfatidilserinas/farmacología , Receptores Acoplados a Proteínas G/genética , Sinapsis/efectos de los fármacos , Animales , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Microglía/metabolismo , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Fosfatidilserinas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Transmisión Sináptica , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato , Proteína Fluorescente Roja
11.
Mol Cell Proteomics ; 20: 100088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33933680

RESUMEN

The outer segment (OS) organelle of vertebrate photoreceptors is a highly specialized cilium evolved to capture light and initiate light response. The plasma membrane which envelopes the OS plays vital and diverse roles in supporting photoreceptor function and health. However, little is known about the identity of its protein constituents, as this membrane cannot be purified to homogeneity. In this study, we used the technique of protein correlation profiling to identify unique OS plasma membrane proteins. To achieve this, we used label-free quantitative MS to compare relative protein abundances in an enriched preparation of the OS plasma membrane with a preparation of total OS membranes. We have found that only five proteins were enriched at the same level as previously validated OS plasma membrane markers. Two of these proteins, TMEM67 and TMEM237, had not been previously assigned to this membrane, and one, embigin, had not been identified in photoreceptors. We further showed that embigin associates with monocarboxylate transporter MCT1 in the OS plasma membrane, facilitating lactate transport through this cellular compartment.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Simportadores/metabolismo , Animales , Bovinos , Ratones Endogámicos C57BL
12.
Hum Mol Genet ; 30(14): 1293-1304, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-33909047

RESUMEN

Over 1200 variants in the ABCA4 gene cause a wide variety of retinal disease phenotypes, the best known of which is autosomal recessive Stargardt disease (STGD1). Disease-causing variation encompasses all mutation categories, from large copy number variants to very mild, hypomorphic missense variants. The most prevalent disease-causing ABCA4 variant, present in ~ 20% of cases of European descent, c.5882G > A p.(Gly1961Glu), has been a subject of controversy since its minor allele frequency (MAF) is as high as ~ 0.1 in certain populations, questioning its pathogenicity, especially in homozygous individuals. We sequenced the entire ~140Kb ABCA4 genomic locus in an extensive cohort of 644 bi-allelic, i.e. genetically confirmed, patients with ABCA4 disease and analyzed all variants in 140 compound heterozygous and 10 homozygous cases for the p.(Gly1961Glu) variant. A total of 23 patients in this cohort additionally harbored the deep intronic c.769-784C > T variant on the p.(Gly1961Glu) allele, which appears on a specific haplotype in ~ 15% of p.(Gly1961Glu) alleles. This haplotype was present in 5/7 of homozygous cases, where the p.(Gly1961Glu) was the only known pathogenic variant. Three cases had an exonic variant on the same allele with the p.(Gly1961Glu). Patients with the c.[769-784C > T;5882G > A] complex allele exhibit a more severe clinical phenotype, as seen in compound heterozygotes with some more frequent ABCA4 mutations, e.g. p.(Pro1380Leu). Our findings indicate that the c.769-784C > T variant is major cis-acting modifier of the p.(Gly1961Glu) allele. The absence of such additional allelic variation on most p.(Gly1961Glu) alleles largely explains the observed paucity of affected homozygotes in the population.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Frecuencia de los Genes , Humanos , Mutación , Penetrancia , Fenotipo , Enfermedad de Stargardt/genética
13.
Hum Mutat ; 42(5): 491-497, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33565221

RESUMEN

ATP8A2 is a P4-ATPase that flips phosphatidylserine across membranes to generate and maintain transmembrane phospholipid asymmetry. Loss-of-function variants cause severe neurodegenerative and developmental disorders. We have identified three ATP8A2 variants in unrelated Iranian families that cause intellectual disability, dystonia, below-average head circumference, mild optic atrophy, and developmental delay. Additionally, all the affected individuals displayed tooth abnormalities associated with defects in teeth development. Two variants (p.Asp825His and p.Met438Val) reside in critical functional domains of ATP8A2. These variants express at very low levels and lack ATPase activity. Inhibitor studies indicate that these variants are misfolded and degraded by the cellular proteasome. We conclude that Asp825, which coordinates with the Mg2+ ion within the ATP binding site, and Met438 are essential for the proper folding of ATP8A2 into a functional flippase. We also provide evidence on the association of tooth abnormalities with defects in ATP8A2, thereby expanding the clinical spectrum of the associated disease.


Asunto(s)
Adenosina Trifosfatasas , Fosfolípidos , Adenosina Trifosfatasas/química , Citoplasma/metabolismo , Humanos , Irán , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Dominios Proteicos
14.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375396

RESUMEN

ABCA4 is an ATP-binding cassette (ABC) transporter expressed in photoreceptors, where it transports its substrate, N-retinylidene-phosphatidylethanolamine (N-Ret-PE), across outer segment membranes to facilitate the clearance of retinal from photoreceptors. Mutations in ABCA4 cause Stargardt macular degeneration (STGD1), an autosomal recessive disorder characterized by a loss of central vision and the accumulation of bisretinoid compounds. The purpose of this study was to determine the molecular properties of ABCA4 variants harboring disease-causing missense mutations in the transmembrane domains. Thirty-eight variants expressed in culture cells were analyzed for expression, ATPase activities, and substrate binding. On the basis of these properties, the variants were divided into three classes: Class 1 (severe variants) exhibited significantly reduced ABCA4 expression and basal ATPase activity that was not stimulated by its substrate N-Ret-PE; Class 2 (moderate variants) showed a partial reduction in expression and basal ATPase activity that was modestly stimulated by N-Ret-PE; and Class 3 (mild variants) displayed expression and functional properties comparable to normal ABCA4. The p.R653C variant displayed normal expression and basal ATPase activity, but lacked substrate binding and ATPase activation, suggesting that arginine 653 contributes to N-Ret-PE binding. Our classification provides a basis for better understanding genotype-phenotype correlations and evaluating therapeutic treatments for STGD1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico Activo/genética , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Animales , Células COS , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Expresión Génica , Estudios de Asociación Genética , Células HEK293 , Humanos , Modelos Moleculares , Mutación Missense , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Dominios Proteicos , Enfermedades de la Retina/congénito , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Retinoides/metabolismo , Enfermedad de Stargardt/enzimología
15.
Transl Vis Sci Technol ; 9(7): 2, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32832209

RESUMEN

Major advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety.


Asunto(s)
Enfermedades de la Retina , Humanos , Medicina de Precisión , Retina , Enfermedades de la Retina/tratamiento farmacológico
16.
Hum Mutat ; 41(11): 1944-1956, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32845050

RESUMEN

Stargardt macular degeneration (Stargardt disease 1 [STGD1]) is caused by mutations in the gene encoding ABCA4, an ATP-binding cassette protein that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across photoreceptor membranes. Reduced ABCA4 activity results in retinoid accumulation leading to photoreceptor degeneration. The disease onset and severity vary from severe loss in visual acuity in the first decade to mild visual impairment late in life. We determined the effect of 22 disease-causing missense mutations on the expression and ATPase activity of ABCA4 in the absence and presence of N-Ret-PE. Three classes were identified that correlated with the disease onset in homozygous STGD1 individuals: Class 1 exhibited reduced ABCA4 expression and ATPase activity that was not stimulated by N-Ret-PE; individuals homozygous for these variants had an early disease onset (≤13 years); Class 2 showed reduced ATPase activity with limited stimulation by N-Ret-PE; these correlated with moderate disease onset (14-40 years); and Class 3 displayed high expression and ATPase activity that was strongly activated by N-Ret-PE; these were associated with late disease onset (>40 years). On the basis of our results, we introduce a functionality index for gauging the effect of missense mutations on STGD1 severity. Our studies support the mild phenotype exhibited by the p.Gly863Ala, p.Asn1868Ile, and p.Gly863Ala/p.Asn1868Ile variants.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Stargardt/genética , Adolescente , Adulto , Niño , Células HEK293 , Homocigoto , Humanos , Persona de Mediana Edad , Mutación Missense , Fenotipo , Fosfatidiletanolaminas , Retinoides , Adulto Joven
17.
Nat Med ; 26(4): 577-588, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32094924

RESUMEN

Transmembrane protein 30A (TMEM30A) maintains the asymmetric distribution of phosphatidylserine, an integral component of the cell membrane and 'eat-me' signal recognized by macrophages. Integrative genomic and transcriptomic analysis of diffuse large B-cell lymphoma (DLBCL) from the British Columbia population-based registry uncovered recurrent biallelic TMEM30A loss-of-function mutations, which were associated with a favorable outcome and uniquely observed in DLBCL. Using TMEM30A-knockout systems, increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell lines and TMEM30A-mutated primary cells, explaining the improved treatment outcome. Furthermore, we found increased tumor-associated macrophages and an enhanced effect of anti-CD47 blockade limiting tumor growth in TMEM30A-knockout models. By contrast, we show that TMEM30A loss-of-function increases B-cell signaling following antigen stimulation-a mechanism conferring selective advantage during B-cell lymphoma development. Our data highlight a multifaceted role for TMEM30A in B-cell lymphomagenesis, and characterize intrinsic and extrinsic vulnerabilities of cancer cells that can be therapeutically exploited.


Asunto(s)
Transformación Celular Neoplásica/genética , Mutación con Pérdida de Función , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapia , Proteínas de la Membrana/genética , Terapia Molecular Dirigida , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Colombia Británica/epidemiología , Células Cultivadas , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Células Jurkat , Mutación con Pérdida de Función/genética , Linfoma de Células B Grandes Difuso/epidemiología , Linfoma de Células B Grandes Difuso/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Adulto Joven
18.
J Neurol ; 267(1): 203-213, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31612321

RESUMEN

ATP8A2-related disorders are autosomal recessive conditions that associate encephalopathy with or without hypotonia, psychomotor delay, abnormal movements, chorea, tremor, optic atrophy and cerebellar atrophy (CARMQ4). Through a multi-centric collaboration, we identified six point mutations (one splice site and five missense mutations) involving ATP8A2 in six individuals from five families. Two patients from one family with the homozygous p.Gly585Val mutation had a milder presentation without encephalopathy. Expression and functional studies of the missense mutations demonstrated that protein levels of four of the five missense variants were very low and lacked phosphatidylserine-activated ATPase activity. One variant p.Ile215Leu, however, expressed at normal levels and displayed phospholipid-activated ATPase activity similar to the non-mutated protein. We therefore expand for the first time the phenotype related to ATP8A2 mutations to less severe forms characterized by cerebellar ataxia without encephalopathy and suggest that ATP8A2 should be analyzed for all cases of syndromic or non-syndromic recessive or sporadic ataxia.


Asunto(s)
Adenosina Trifosfatasas/genética , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia Cerebelosa/fisiopatología , Proteínas de Transferencia de Fosfolípidos/genética , Adulto , Niño , Preescolar , Consanguinidad , Femenino , Genes Recesivos , Humanos , Lactante , Masculino , Mutación Missense , Linaje , Fenotipo , Mutación Puntual
19.
J Neuroendocrinol ; 31(11): e12804, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31630448

RESUMEN

Colour vision relies on retinal photoreceptors that express a different predominant visual pigment protein (opsin). In several vertebrates, the primary opsin expressed by a photoreceptor can change throughout ontogeny, although the molecular factors that influence such regulation are poorly understood. One of these factors is thyroid hormone which, together with its receptors, modulates opsin expression in the retinas of multiple vertebrates including rodents and salmonid fishes. In the latter, thyroid hormone induces a switch in opsin expression from SWS1 (ultraviolet light sensitive) to SWS2 (short wavelength or blue light sensitive) in the single cone photoreceptors of the retina. The actions of other hormones on opsin expression have not been investigated. In the present study, we used a transgenic strain of coho salmon (Oncorhynchus kitsutch) with enhanced levels of circulating growth hormone compared to that of wild siblings to assess the effects of this hormone on the SWS1 to SWS2 opsin switch. Transgenic fish showed a developmentally accelerated opsin switch compared to size-matched controls as assessed by immunohistological and in situ hybridisation labelling of photoreceptors and by quantification of transcripts using quantitative polymerase chain reaction. This accelerated switch led to a different spectral sensitivity maximum, under a middle to long wavelength adapting background, from ultraviolet (λmax  ~ 380 nm) in controls to short wavelengths (λmax  ~ 430 nm) in transgenics, demonstrating altered colour vision. The effects of growth hormone over-expression were independent of circulating levels of thyroid hormone (triiodothyronine), the hormone typically associated with opsin switches in vertebrates.


Asunto(s)
Hormona del Crecimiento/fisiología , Oncorhynchus kisutch , Opsinas/genética , Retina/metabolismo , Animales , Animales Modificados Genéticamente , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Hormona del Crecimiento/sangre , Hormona del Crecimiento/genética , Hormona del Crecimiento/farmacología , Luz , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/metabolismo , Opsinas/metabolismo , Retina/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Salmonidae/genética , Salmonidae/metabolismo , Hormonas Tiroideas/sangre
20.
Hum Gene Ther ; 30(11): 1361-1370, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31418294

RESUMEN

Autosomal recessive Stargardt disease is the most common inherited macular degeneration in humans. It is caused by mutations in the retina-specific ATP binding cassette transporter A4 (ABCA4) that is essential for the clearance of all-trans-retinal from photoreceptor cells. Loss of this function results in the accumulation of toxic bisretinoids in the outer segment disk membranes and their subsequent transfer into adjacent retinal pigment epithelium (RPE) cells. This ultimately leads to the Stargardt disease phenotype of increased retinal autofluorescence and progressive RPE and photoreceptor cell loss. Adeno-associated virus (AAV) vectors have been widely used in gene therapeutic applications, but their limited cDNA packaging capacity of ∼4.5 kb has impeded their use for transgenes exceeding this limit. AAV dual vectors were developed to overcome this size restriction. In this study, we have evaluated the in vitro expression of ABCA4 using three options: overlap, transplicing, and hybrid ABCA4 dual vector systems. The hybrid system was the most efficient of these dual vector alternatives and used to express the full-length ABCA4 in Abca4-/- mice. The full-length ABCA4 protein correctly localized to photoreceptor outer segments. Moreover, treatment of Abca4-/- mice with this ABCA4 hybrid dual vector system resulted in a reduced accumulation of the lipofuscin/N-retinylidene-N-retinylethanolamine (A2E) autofluorescence in vivo, and retinal A2E quantification supported these findings. These results show that the hybrid AAV dual vector option is both safe and therapeutic in mice, and the delivered ABCA4 transgene is functional and has a significant effect on reducing A2E accumulation in the Abca4-/- mouse model of Stargardt disease.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/uso terapéutico , Dependovirus/genética , Genes Recesivos , Vectores Genéticos/metabolismo , Retina/patología , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/terapia , Animales , Modelos Animales de Enfermedad , Fluorescencia , Fondo de Ojo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Retina/metabolismo , Retinoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...