Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405764

RESUMEN

Genomics for rare disease diagnosis has advanced at a rapid pace due to our ability to perform "N-of-1" analyses on individual patients. The increasing sizes of ultra-rare, "N-of-1" disease cohorts internationally newly enables cohort-wide analyses for new discoveries, but well-calibrated statistical genetics approaches for jointly analyzing these patients are still under development.1,2 The Undiagnosed Diseases Network (UDN) brings multiple clinical, research and experimental centers under the same umbrella across the United States to facilitate and scale N-of-1 analyses. Here, we present the first joint analysis of whole genome sequencing data of UDN patients across the network. We apply existing and introduce new, well-calibrated statistical methods for prioritizing disease genes with de novo recurrence and compound heterozygosity. We also detect pathways enriched with candidate and known diagnostic genes. Our computational analysis, coupled with a systematic clinical review, recapitulated known diagnoses and revealed new disease associations. We make our gene-level findings and variant-level information across the cohort available in a public-facing browser (https://dbmi-bgm.github.io/udn-browser/). These results show that N-of-1 efforts should be supplemented by a joint genomic analysis across cohorts.

2.
Proc Natl Acad Sci U S A ; 120(22): e2221683120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216548

RESUMEN

The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.


Asunto(s)
Cilióforos , Euplotes , Euplotes/genética , Euplotes/metabolismo , Código Genético , Secuencia de Bases , Codón de Terminación/genética , Codón de Terminación/metabolismo , Cilióforos/genética , Flujo Genético
3.
Sci Rep ; 12(1): 3447, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236910

RESUMEN

RNA editing in the form of substituting adenine with inosine (A-to-I editing) is the most frequent type of RNA editing in many metazoan species. In most species, A-to-I editing sites tend to form clusters and editing at clustered sites depends on editing of the adjacent sites. Although functionally important in some specific cases, A-to-I editing usually is rare. The exception occurs in soft-bodied coleoid cephalopods, where tens of thousands of potentially important A-to-I editing sites have been identified, making coleoids an ideal model for studying of properties and evolution of A-to-I editing sites. Here, we apply several diverse techniques to demonstrate a strong tendency of coleoid RNA editing sites to cluster along the transcript. We show that clustering of editing sites and correlated editing substantially contribute to the transcriptome diversity that arises due to extensive RNA editing. Moreover, we identify three distinct types of editing site clusters, varying in size, and describe RNA structural features and mechanisms likely underlying formation of these clusters. In particular, these observations may explain sequence conservation at large distances around editing sites and the observed dependency of editing on mutations in the vicinity of editing sites.


Asunto(s)
Cefalópodos , Animales , Cefalópodos/genética , Cefalópodos/metabolismo , Inosina/metabolismo , ARN/genética , Edición de ARN , ARN Mensajero/genética
4.
Mol Biol Evol ; 38(12): 5345-5358, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146097

RESUMEN

Schistosomes, the human parasites responsible for snail fever, are female-heterogametic. Different parts of their ZW sex chromosomes have stopped recombining in distinct lineages, creating "evolutionary strata" of various ages. Although the Z-chromosome is well characterized at the genomic and molecular level, the W-chromosome has remained largely unstudied from an evolutionary perspective, as only a few W-linked genes have been detected outside of the model species Schistosoma mansoni. Here, we characterize the gene content and evolution of the W-chromosomes of S. mansoni and of the divergent species S. japonicum. We use a combined RNA/DNA k-mer based pipeline to assemble around 100 candidate W-specific transcripts in each of the species. About half of them map to known protein coding genes, the majority homologous to S. mansoni Z-linked genes. We perform an extended analysis of the evolutionary strata present in the two species (including characterizing a previously undetected young stratum in S. japonicum) to infer patterns of sequence and expression evolution of W-linked genes at different time points after recombination was lost. W-linked genes show evidence of degeneration, including high rates of protein evolution and reduced expression. Most are found in young lineage-specific strata, with only a few high expression ancestral W-genes remaining, consistent with the progressive erosion of nonrecombining regions. Among these, the splicing factor u2af2 stands out as a promising candidate for primary sex determination, opening new avenues for understanding the molecular basis of the reproductive biology of this group. Keywords: sex chromosomes, evolutionary strata, W-linked gene, sex determining gene, schistosome parasites.


Asunto(s)
Evolución Molecular , Cromosomas Sexuales , Animales , Femenino , Genoma , Genómica , Humanos , Schistosoma/genética , Cromosomas Sexuales/genética
5.
Fungal Genet Biol ; 114: 34-41, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29548845

RESUMEN

Riboswitches are conserved RNA structures located in non-coding regions of mRNA and able to bind small molecules (e.g. metabolites) changing conformation upon binding. This feature enables them to function as regulators of gene expression. The thiamin pyrophosphate (TPP) riboswitch is the only type of riboswitches found not only in bacteria, but also in eukaryotes - in plants, green algae, protists, and fungi. Two main mechanisms of fungal TPP riboswitch action, involving alternative splicing, have been established so far. Here, we report a large-scale bioinformatic study of riboswitch structural features, action mechanisms, and distribution along the fungal taxonomy groups. For each putatively regulated gene, we reconstruct the riboswitch structure, identify other components of the regulation machinery, and establish mechanisms of riboswitch-mediated regulation. In addition to three genes known to be regulated by TPP riboswitches, thiazole synthase THI4, hydroxymethilpyrimidine-syntase NMT1, and putative transporter NCU01977, we identify two new genes, a putative thiamin transporter THI9 and a transporter of unknown specificity. While the riboswitch sequence and structure remain highly conserved in all species and genes, the mode of riboswitch-mediated regulation varies between regulated genes. The riboswitch usage varies strongly between fungal taxa, with the largest number of riboswitch-regulated genes found in Pezizomycotina and no riboswitch-mediated regulation established in Saccaromycotina.


Asunto(s)
Hongos/genética , Genoma Fúngico/genética , Riboswitch/genética , Tiamina Pirofosfato/genética , Empalme Alternativo , Hongos/fisiología , Regulación Fúngica de la Expresión Génica/genética , Estudios de Asociación Genética , Genómica , Filogenia , ARN de Hongos/genética , ARN de Hongos/metabolismo , Alineación de Secuencia , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo
6.
Front Microbiol ; 9: 428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593678

RESUMEN

The pangenome is the collection of all groups of orthologous genes (OGGs) from a set of genomes. We apply the pangenome analysis to propose a definition of prokaryotic species based on identification of lineage-specific gene sets. While being similar to the classical biological definition based on allele flow, it does not rely on DNA similarity levels and does not require analysis of homologous recombination. Hence this definition is relatively objective and independent of arbitrary thresholds. A systematic analysis of 110 accepted species with the largest numbers of sequenced strains yields results largely consistent with the existing nomenclature. However, it has revealed that abundant marine cyanobacteria Prochlorococcus marinus should be divided into two species. As a control we have confirmed the paraphyletic origin of Yersinia pseudotuberculosis (with embedded, monophyletic Y. pestis) and Burkholderia pseudomallei (with B. mallei). We also demonstrate that by our definition and in accordance with recent studies Escherichia coli and Shigella spp. are one species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...