Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 4: 6112, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25135165

RESUMEN

Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013--a non-drought year--Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated "very unhealthy"). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5-10% of Indonesia's mean annual GHG emissions for 2000-2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Incendios , Carbono/análisis , Indonesia , Lluvia
2.
PLoS One ; 9(7): e101654, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25029192

RESUMEN

The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Árboles , Madera , Borneo , Análisis Espacio-Temporal , Árboles/fisiología
3.
PLoS One ; 8(8): e69887, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967062

RESUMEN

Combining protected areas with natural forest timber concessions may sustain larger forest landscapes than is possible via protected areas alone. However, the role of timber concessions in maintaining natural forest remains poorly characterized. An estimated 57% (303,525 km²) of Kalimantan's land area (532,100 km²) was covered by natural forest in 2000. About 14,212 km² (4.7%) had been cleared by 2010. Forests in oil palm concessions had been reduced by 5,600 km² (14.1%), while the figures for timber concessions are 1,336 km² (1.5%), and for protected forests are 1,122 km² (1.2%). These deforestation rates explain little about the relative performance of the different land use categories under equivalent conversion risks due to the confounding effects of location. An estimated 25% of lands allocated for timber harvesting in 2000 had their status changed to industrial plantation concessions in 2010. Based on a sample of 3,391 forest plots (1×1 km; 100 ha), and matching statistical analyses, 2000-2010 deforestation was on average 17.6 ha lower (95% C.I.: -22.3 ha- -12.9 ha) in timber concession plots than in oil palm concession plots. When location effects were accounted for, deforestation rates in timber concessions and protected areas were not significantly different (Mean difference: 0.35 ha; 95% C.I.: -0.002 ha-0.7 ha). Natural forest timber concessions in Kalimantan had similar ability as protected areas to maintain forest cover during 2000-2010, provided the former were not reclassified to industrial plantation concessions. Our study indicates the desirability of the Government of Indonesia designating its natural forest timber concessions as protected areas under the IUCN Protected Area Category VI to protect them from reclassification.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Árboles , Borneo , Toma de Decisiones , Indonesia
4.
PLoS One ; 7(11): e49142, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145100

RESUMEN

The geographic distribution of Bornean orang-utans and its overlap with existing land-use categories (protected areas, logging and plantation concessions) is a necessary foundation to prioritize conservation planning. Based on an extensive orang-utan survey dataset and a number of environmental variables, we modelled an orang-utan distribution map. The modelled orang-utan distribution map covers 155,106 km(2) (21% of Borneo's landmass) and reveals four distinct distribution areas. The most important environmental predictors are annual rainfall and land cover. The overlap of the orang-utan distribution with land-use categories reveals that only 22% of the distribution lies in protected areas, but that 29% lies in natural forest concessions. A further 19% and 6% occurs in largely undeveloped oil palm and tree plantation concessions, respectively. The remaining 24% of the orang-utan distribution range occurs outside of protected areas and outside of concessions. An estimated 49% of the orang-utan distribution will be lost if all forest outside of protected areas and logging concessions is lost. To avoid this potential decline plantation development in orang-utan habitats must be halted because it infringes on national laws of species protection. Further growth of the plantation sector should be achieved through increasing yields in existing plantations and expansion of new plantations into areas that have already been deforested. To reach this goal a large scale island-wide land-use masterplan is needed that clarifies which possible land uses and managements are allowed in the landscape and provides new standardized strategic conservation policies. Such a process should make much better use of non-market values of ecosystem services of forests such as water provision, flood control, carbon sequestration, and sources of livelihood for rural communities. Presently land use planning is more driven by vested interests and direct and immediate economic gains, rather than by approaches that take into consideration social equity and environmental sustainability.


Asunto(s)
Especies en Peligro de Extinción/tendencias , Filogeografía , Pongo pygmaeus , Animales , Borneo , Ecosistema , Ambiente , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...