Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 136(3): 277-290, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905462

RESUMEN

The formation of the Baja California Peninsula (BCP) has impacted the microevolutionary dynamics of different species in ways that depend on biological traits such as dispersal capacity. Plants with relatively low levels of vagility have exhibited high genetic divergence between the BCP and Continental mainland. Brahea armata (Arecaceae) is a palm species inhabiting the northern part of the BCP and Sonora; its distribution occurs in isolated oases of vegetation. We aimed to evaluate the influence of the formation of the BCP on the genetic structure of B. armata using nuclear microsatellites and chloroplast markers (cpDNA) to compare patterns of genetic diversity and structure with previous published studies. Because gene flow through seeds is usually more limited compared to pollen flow, we expect to find stronger genetic structure at (cpDNA) than at nuclear markers. Moreover, larger genetic structure might also be explained by the smaller effective population size of cpDNA. We analyzed six microsatellite markers and two cpDNA regions. The main results indicated high levels of genetic differentiation among isolated populations located in the BCP, while low genetic differentiation was found between southern populations of the BCP and Sonora, suggesting long distance gene flow. In contrast, chloroplast markers indicated high levels of genetic structure between BCP and Sonora populations, suggesting asymmetrical gene flow between pollen (measured by nuclear microsatellites) and seed (cpDNA markers). This study provides valuable information on genetic diversity of B. armata that can be relevant for conservation and management; and develops microsatellites markers that can be transferred to other Brahea species.


Asunto(s)
Arecaceae , Flujo Génico , México , ADN de Cloroplastos/genética , Estructuras Genéticas , Variación Genética , Repeticiones de Microsatélite
2.
Biomimetics (Basel) ; 7(2)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35466255

RESUMEN

We have studied the external surface (elytra) of the Sonoran Desert beetle (Eleodes eschscholtzii). Our aim was to assess whether this species has similar traits to some beetles from the Namibian Desert that are known to have hierarchical micropatterns that allow for water harvesting. We have conducted scanning electron microscopy (SEM) and apparent contact angle experiments on specimens collected at two sampling sites with different ambient humidity. The results show that the beetle's external surface microstructure is composed of a compact array of polygons with randomly scattered protuberances. The density of the polygons in the microstructure is different for individuals collected in different sites: the polygon array is denser in the more humid site and less dense in the drier site. The measured contact angles also depend on the sampling site. For individuals collected in the drier site, the average apparent contact angle is 70°, whereas for the more humid site, the average apparent contact angle is 92°. FT-IR experiments are consistent with the presence of hydrophobic wax compounds in the studied surfaces. Our investigation opens new questions that are currently being addressed by experiments that are underway. For instance, it would be interesting to know whether the observed nanopatterns could be used in biomimetic devices for water harvesting purposes.

3.
Microbiol Res ; 247: 126732, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33743500

RESUMEN

Mining operations often generate tailing dams that contain toxic residues and are a source of contamination when left unconfined. The establishment of a plant community over the tailings has been proposed as a containment strategy known as phytostabilization. Previously, we described naturally occurring mine tailing colonizing plants such as Acacia farnesiana, Brickellia coulteri, Baccharis sarothroides, and Gnaphalium leucocephalum without finding local adaptation. We explored the rhizosphere microbes as contributors in plant establishment and described both the culturable and in situ diversity of rhizospheric bacteria using the 16S rRNA gene and metagenomic shotgun sequencing. We built a synthetic community (SC) of culturable rhizosphere bacteria from the mine tailings. The SC was then the foundation for a serial passes experiment grown in plant-derived nutrient sources, selecting for heavy metals tolerance, community cooperation, and competition. The outcome of the serial passes was named the 'final synthetic community' (FSC). Overall, diversity decreased from in situ uncultivable microbes from roots (399 bacteria genera) to the cultivated communities (291 genera), the SC (94 genera), and the lowest diversity was in the FSC (43 genera). Metagenomic diversity clustered into 94,245 protein families, where we found plant growth promotion-related genes such as the csgBAC and entCEBAH, coded in a metagenome-assembled genome named Kosakonia sp. Nacozari. Finally, we used the FSC to inoculate mine tailing colonizing plants in a greenhouse experiment. The plants with the FSC inocula observed higher relative plant growth rates in sterile substrates. The FSC presents promising features that might make it useful for phytostabilization tailored strategies.


Asunto(s)
Metagenómica , Plantas/microbiología , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Metales Pesados , Microbiota/fisiología , Minería , Desarrollo de la Planta , Raíces de Plantas , ARN Ribosómico 16S , Suelo , Contaminantes del Suelo
4.
J Environ Manage ; 270: 110873, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721316

RESUMEN

Metals are key materials extensively employed in several industries to produce technological and daily-life products. The mining industry that produces such commodities generates Tons of waste that if not remediated can be transferred to the surrounding environment, thus representing a water, air, and soil pollution threat. In this work, we evaluated the feasibility of microbial sulfate reduction (SR) as a management strategy for this waste. Mine tailings were sampled from two abandoned mining sites located in Sonora (northwestern Mexico) and treated in anaerobic microcosms under SR conditions using anaerobic sludge as the inoculum at two different tailing:inoculum ratios (TIR). Major TIR's were found to be the triggering factor for the highest SR activities observed (73.6 ± 8.8 mg SO42- L-1 day-1). This stimulation was linked to the dissolution of sulfate bearing minerals (anglesite, jarosite, and gypsum) which provided additional sulfate for microbial activity. However, under this condition, longer lag phases for SR were observed, which was potentially due to pH inhibition at early incubation stages (pH ~3.7). Despite this, all biologically SR performing treatments presented important sulfide precipitation which was associated to changes in the mineralogy of the mine tailings. Metals of environmental concern such as As, Cd, Co, Cr and, Pb were detected to have shifted from the aqueous extractable phase to the bound to Fe and Mn oxides and residual phases. This finding was in accordance with the non-detectable concentrations of these metals in the aqueous phase by the end of the biological treatment which proved the effectiveness of this approach. This study provides insights into the promising potential of anaerobic microbes for the environmental management of mine tailings.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Contaminación Ambiental/análisis , México , Minería
5.
Ecol Evol ; 8(11): 5661-5673, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938082

RESUMEN

Historical factors such as climatic oscillations during the Pleistocene epoch have dramatically impacted species distributions. Studies of the patterns of genetic structure in angiosperm species using molecular markers with different modes of inheritance contribute to a better understanding of potential differences in colonization and patterns of gene flow via pollen and seeds. These markers may also provide insights into the evolution of reproductive systems in plants. Oxalis alpina is a tetraploid, herbaceous species inhabiting the Sky Island region of the southwestern United States and northern Mexico. Our main objective in this study was to analyze the influence of climatic oscillations on the genetic structure of O. alpina and the impact of these oscillations on the evolutionary transition from tristylous to distylous reproductive systems. We used microsatellite markers and compared our results to a previous study using chloroplast genetic markers. The phylogeographic structure inferred by both markers was different, suggesting that intrinsic characteristics including the pollination system and seed dispersal have influenced patterns of gene flow. Microsatellites exhibited low genetic structure, showed no significant association between geographic and genetic distances, and all individual genotypes were assigned to two main groups. In contrast, chloroplast markers exhibited a strong association between geographic and genetic distance, had higher levels of genetic differentiation, and were assigned to five groups. Both types of DNA markers showed evidence of a northward expansion as a consequence of climate warming occurring in the last 10,000 years. The data from both types of markers support the hypothesis for several independent transitions from tristyly to distyly.

6.
PeerJ ; 5: e3280, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484675

RESUMEN

Phytostabilization is a remediation technology that uses plants for in-situ stabilization of contamination in soils and mine tailings. The objective of this study was to identify native plant species with potential for phytostabilization of the abandoned mine tailings in Nacozari, Sonora in northern Mexico. A flora of 42 species in 16 families of angiosperms was recorded on the tailings site and the abundance of the most common perennial species was estimated. Four of the five abundant perennial species showed evidence of regeneration: the ability to reproduce and establish new seedlings. A comparison of selected physicochemical properties of the tailings in vegetated patches with adjacent barren areas suggests that pH, electrical conductivity, texture, and concentration of potentially toxic elements do not limit plant distribution. For the most abundant species, the accumulation factor for most metals was <1, with the exception of Zn in two species. A short-term experiment on adaptation revealed limited evidence for the formation of local ecotypes in Prosopis velutina and Amaranthus watsonii. Overall, the results of this study indicate that five native plant species might have potential for phytostabilization of the Nacozari tailings and that seed could be collected locally to revegetate the site. More broadly, this study provides a methodology that can be used to identify native plants and evaluate their phytostabilization potential for similar mine tailings.

7.
Evolution ; 67(8): 2309-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23888853

RESUMEN

We investigated the role of morph-based differences in the expression of inbreeding depression in loss of the mid-styled morph from populations of tristylous Oxalis alpina. The extent of self-compatibility (SC) of reproductive morphs, the degree of self-fertilization, and the magnitude of inbreeding depression were investigated in three populations of O. alpina differing in their tristylous incompatibility relationships. All three populations exhibited significant inbreeding depression. In two populations with highly modified tristylous incompatibility, manifested as increased reciprocal compatibility between short- and long-styled morphs, substantial SC and self-fertilization of mid-styled morphs were detected, and expected to result in expression of inbreeding depression in the progeny of mid-styled morphs in the natural populations. In contrast, significant self-fertility of the mid-styled morph was absent from the population with typical tristylous incompatibility, and no self-fertilization could be detected. Although self-fertilization and expression of inbreeding depression should result in selection against the mid-styled morph in the later stages of the transition from tristyly to distyly, in O. alpina selection against the mid-styled morph in the early phases of the evolution of distyly is likely due to genic selection against mid-alleles associated with modified tristylous incompatibility, rather than expression of inbreeding depression.


Asunto(s)
Evolución Biológica , Endogamia , Magnoliopsida/genética , Autofecundación , Biomasa , ADN de Plantas/genética , Flores/fisiología , Magnoliopsida/fisiología
8.
Am J Bot ; 99(5): 923-32, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22539518

RESUMEN

PREMISE OF THE STUDY: Variation among individuals in levels of inbreeding depression associated with selfing levels could influence mating system evolution by purging deleterious alleles, but empirical evidence for this association is limited. METHODS: We investigated the association of family-level inbreeding depression and presumed inbreeding history in a tristylous population of Oxalis alpina (Oxalidaceae). KEY RESULTS: Mid-styled individuals possessed the greatest degree of self-compatibility (SC) and produced more autogamous capsules than short- or long-styled individuals. Offspring of highly self-compatible mid-styled individuals showed reduced inbreeding depression. Mid-styled plants that produced capsules autogamously exhibited reduced stigma-anther separation compared to mid-styled plants that produced no capsules autogamously. Reduced inbreeding depression was not correlated with stigma-anther separation, suggesting that self-compatibility and autogamy evolve before morphological changes in stigma-anther separation. CONCLUSIONS: Purging of inbreeding depression occurred in SC mid-styled maternal families. Low inbreeding depression in SC mid-styled plants may lead to retention of the mid-styled morph in populations, despite the occurrence of higher selfing rates in mid-styled relative to short- or long-styled morphs. Variation among individuals in levels of self-fertilization within populations may lead to associations between inbreeding lineages and lower levels of inbreeding depression, influencing the evolution of mating systems.


Asunto(s)
Endogamia , Rosaceae/fisiología , Flores/anatomía & histología , Flores/fisiología , Polinización/fisiología , Dinámica Poblacional , Semillas/crecimiento & desarrollo , Autofecundación/fisiología
9.
New Phytol ; 185(3): 829-40, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19968800

RESUMEN

Although the 6 magnitude and pattern of correlation among floral traits (phenotypic integration) is usually conceived as an adaptation for successful pollination and reproduction, studies on the evolution of plant reproductive systems have generally focused on one or a few characters. If evolutionary transitions between reproductive systems involve morphological floral adjustments, changes in the magnitude and pattern of phenotypic integration of floral traits may be expected. In this study, we focused on the evolutionary dynamics of a complex adaptive trait, the extent of reciprocity (reciprocal placement) among sexual organs in a heterostylous species, and explored the associated changes in phenotypic floral integration during the transition from tristyly to distyly. The extent of reciprocity and both the magnitude and pattern of floral integration were characterized in 12 populations of Oxalis alpina representing the tristyly-distyly gradient. Although the extent of reciprocity increased along the tristyly-distyly transition, the flower size diminished. These adjustments did not affect the magnitude, but did affect the pattern, of floral integration. *Changes in the pattern of floral integration suggested that allometric, functional and pleiotropic relationships among floral traits were affected during this evolutionary transition.


Asunto(s)
Helechos/anatomía & histología , Helechos/fisiología , Flores/anatomía & histología , Flores/fisiología , Geografía , México , Modelos Biológicos , Análisis Multivariante , Fenotipo , Análisis de Componente Principal , Reproducción
10.
Am J Bot ; 94(6): 972-85, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21636466

RESUMEN

The evolution of distyly from tristyly was investigated in populations of Oxalis alpina at high elevations throughout the Sky Islands of the Sonoran Desert. Incompatibility systems in tristylous populations, where self-incompatible short-, mid-, and long-styled morphs occur in populations, vary from those typical of tristylous species in which each morph is equally capable of fertilizing ovules of the other two morphs, to breeding systems in which incompatibility relationships are asymmetric. In these populations, selection against the allele controlling expression of the mid-styled morph is likely. The degree of modification of incompatibility in the short- and long-styled morphs in 10 populations was strongly associated with fewer mid-styled morphs, supporting models predicting the effect of these modifications of incompatibility on frequency of the mid-styled morph. Self-compatibility of the mid-styled morph may be important for maintaining the frequency of this morph, depending on the level of self-pollination, self-fertilization, and the extent of inbreeding depression. Modifications of incompatibility in tristylous populations and the distribution of distylous populations of O. alpina in the Sky Island region have similar geographic components, indicating the potential importance of historical factors in the evolution of distyly from tristyly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...