Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolomics ; 20(3): 58, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773056

RESUMEN

INTRODUCTION: Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging. OBJECTIVE: However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied. METHOD: Therefore, the present study used 1H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat. RESULTS: Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification. CONCLUSION: These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.


Asunto(s)
Metabolómica , Triticum , Triticum/metabolismo , Triticum/efectos de los fármacos , Metabolómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Espectroscopía de Resonancia Magnética/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Cromatografía Líquida con Espectrometría de Masas
2.
Environ Sci Pollut Res Int ; 31(20): 29644-29655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581633

RESUMEN

Tillandsia species are plants from the Bromeliaceae family which display biomonitoring capacities in both active and passive modes. The bioaccumulation potential of Tillandsia aeranthos (Loisiel.) Desf. and Tillandsia bergeri Mez acclimated to Southern/Mediterranean Europe has never been studied. More generally, few studies have detailed the maximum accumulation potential of Tillandsia leaves through controlled experiments. The aim of this study is to evaluate the maximum accumulation values of seven metals (Co, Cu, Mn, Ni, Pb, Pt, and Zn) in T. aeranthos and T. bergeri leaves. Plants were immersed in different mono elemental metallic solutions of Co (II), Cu (II), Mn (II), Ni (II), Pb (II), Pt (IV), and Zn (II) ions at different concentrations. In addition, cocktail solutions of these seven metals at different concentrations were prepared to study the main differences and the potential selectivity between metals. After exposure, the content of these metals in the leaves were measured by inductively coupled plasma-optical emission spectrometry. Data sets were evaluated by a fitted regression hyperbola model and principal component analysis, maximum metal loading capacity, and thermodynamic affinity constant were determined. The results showed important differences between the two species, with T. bergeri demonstrating higher capacity and affinity for metals than T. aeranthos. Furthermore, between the seven metals, Pb and Ni showed higher enrichment factors (EF). T. bergeri might be a better bioaccumulator than T. aeranthos with marked selectivity for Pb and Ni, metals of concern in air quality biomonitoring.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Metales , Hojas de la Planta , Tillandsia , Tillandsia/metabolismo , Hojas de la Planta/metabolismo , Contaminantes Atmosféricos/metabolismo , Monitoreo del Ambiente/métodos , Metales/metabolismo , Espectrofotometría Atómica , Análisis de Componente Principal , Análisis de Regresión , Bioacumulación , Región Mediterránea
3.
Plant Methods ; 20(1): 38, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468328

RESUMEN

BACKGROUND: The extraction of thylakoids is an essential step in studying the structure of photosynthetic complexes and several other aspects of the photosynthetic process in plants. Conventional protocols have been developed for selected land plants grown in controlled conditions. Plants accumulate defensive chemical compounds such as polyphenols to cope with environmental stresses. When the polyphenol levels are high, their oxidation and cross-linking properties prevent thylakoid extraction. RESULTS: In this study, we developed a method to counteract the hindering effects of polyphenols by modifying the grinding buffer with the addition of both vitamin C (VitC) and polyethylene glycol (PEG4000). This protocol was first applied to the marine plant Posidonia oceanica and then extended to other plants synthesizing substantial amounts of polyphenols, such as Quercus pubescens (oak) and Vitis vinifera (grapevine). Native gel analysis showed that photosynthetic complexes (PSII, PSI, and LHCII) can be extracted from purified membranes and fractionated comparably to those extracted from the model plant Arabidopsis thaliana. Moreover, total protein extraction from frozen P. oceanica leaves was also efficiently carried out using a denaturing buffer containing PEG and VitC. CONCLUSIONS: Our work shows that the use of PEG and VitC significantly improves the isolation of native thylakoids, native photosynthetic complexes, and total proteins from plants containing high amounts of polyphenols and thus enables studies on photosynthesis in various plant species grown in natural conditions.

4.
Plants (Basel) ; 13(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337950

RESUMEN

Volatile organic compounds (VOCs) with a large chemical diversity are emitted by plant flowers. These compounds play an important role in the ecology of plants. This review presents the different ecological roles of VOCs present in the odor plumes of plant flowers, such as pollination, defense, adaptation to their environment, and communication with other organisms. The production and accumulation sites of VOCs in plants with their spatial and temporal variations, including environmental issues, are also summarized. To evaluate the qualitative and quantitative chemical composition of VOCs, several methods of extraction and analysis were used. Headspace (HS) sampling coupled with solid phase microextraction (SPME) is now well-developed for the extraction process. Parameters are known, and several fibers are now available to optimize this extraction. Most of the time, SPME is coupled with gas chromatography-mass spectrometry (GC-MS) to determine the structural identification of the VOCs, paying attention to the use of several complementary methods for identification like the use of databases, retention indices, and, when available, comparison with authentic standards analyses. The development of the knowledge on VOCs emitted by flowers is of great importance for plant ecology in the context of environmental and climate changes.

5.
Phytochem Anal ; 35(4): 708-722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246169

RESUMEN

INTRODUCTION: The cacao tree (Theobroma cacao), a perennial crop that serves as a source of cacao beans, can suffer from drastic climate changes such as irregular rainfall and shorter rainy seasons. The search for hybrids which are capable of producing specific metabolites favoring adaptation in new climatic conditions is a challenge in cacao farming. OBJECTIVES: We aimed to (1) analyze the metabolic changes in calli of three cacao genotypes during water deficit induced by incubation with polyethylene glycol and (2) assess their response to water deficit stress with regard to somatic embryo differentiation. METHODS: Metabolic profiling was carried out using 1H-NMR spectroscopy and multivariate data analysis was applied to crude extracts of calli grown in non-stress or water deficit stress conditions. RESULTS: Water deficit stress influences the capacity of calli to produce embryos. The SCA12 genotype exhibited the best conversion capacity under severe conditions and was considered as tolerant to drought, followed by the SCA6 genotype (mid-tolerant) and the MA12 genotype (sensitive). Fifty-four metabolites were identified in the three cacao genotypes and discriminant metabolites were identified. Metabolites involved in water stress tolerance such as fructose, trans-aconitic acid, leucine, and hydroxybenzene derivatives were observed in SCA12, the tolerant genotype. CONCLUSION: These results demonstrate the utility of 1H-NMR metabolomics as an essential tool for the analysis of the drought tolerance characteristics of T. cacao.


Asunto(s)
Cacao , Sequías , Metaboloma , Polietilenglicoles , Cacao/metabolismo , Polietilenglicoles/farmacología , Genotipo , Metabolómica , Estrés Fisiológico , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos
6.
Molecules ; 28(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067611

RESUMEN

The search for potent antimicrobial compounds is critical in the face of growing antibiotic resistance. This study explores Acalypha arvensis Poepp. (A. arvensis), a Caribbean plant traditionally used for disease treatment. The dried plant powder was subjected to successive extractions using different solvents: hexane (F1), dichloromethane (F2), methanol (F3), a 50:50 mixture of methanol and water (F4), and water (F5). Additionally, a parallel extraction was conducted using a 50:50 mixture of methanol and chloroform (F6). All the fractions were evaluated for their antimicrobial activity, and the F6 fraction was characterized using untargeted metabolomics using SPME-GC×GC-TOFMS. The extracts of A. arvensis F3, F4, and F5 showed antibacterial activity against Staphylococcus aureus ATCC 25923 (5 mg/mL), MRSA BA22038 (5 mg/mL), and Pseudomonas aeruginosa ATCC 27853 (10 mg/mL), and fraction F6 showed antibacterial activity against Staphylococcus aureus ATCC 29213 (2 mg/mL), Escherichia coli ATCC 25922 (20 mg/mL), Pseudomonas aeruginosa ATCC 27853 (10 mg/mL), Enterococcus faecalis ATCC 29212 (10 mg/mL), Staphylococcus aureus 024 (2 mg/mL), and Staphylococcus aureus 003 (2 mg/mL). Metabolomic analysis of F6 revealed 2861 peaks with 58 identified compounds through SPME and 3654 peaks with 29 identified compounds through derivatization. The compounds included methyl ester fatty acids, ethyl ester fatty acids, terpenes, ketones, sugars, amino acids, and fatty acids. This study represents the first exploration of A. arvensis metabolomics and its antimicrobial potential, providing valuable insights for plant classification, phytochemical research, and drug discovery.


Asunto(s)
Acalypha , Antiinfecciosos , Metanol , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Ácidos Grasos , Ésteres , Agua , Extractos Vegetales/farmacología , Extractos Vegetales/química
7.
World J Microbiol Biotechnol ; 39(12): 338, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821792

RESUMEN

Nowadays, the exploitation of biopolymers in the industrial sector has become a trend. Chitosan is considered one of the most investigated biopolymers due to its abundance and antibacterial, antifungal, and antibiofilm activities. In this work, chitosan was chemically extracted from shrimp shells. Solutions of HCl 1 M, NaOH 4 M, and NaOH 15 M were used for the demineralization, deproteinization, and deacetylation process, respectively. The utilized methods of characterization (FTIR, 1 H NMR, 13 C NMR, and SEC-MALS) revealed that the obtained chitosan has a moderate degree of deacetylation and low molecular weight (DDA = 74% and Mw = 72.14 kDa). The microdilution method and inoculation of solid medium were carried out to assess the antibiofilm action of chitosan against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus hirae, Escherichia coli, Rhizopus sp., and Aspergillus sp. which are known as foodborne microorganisms. Results showed that the produced chitosan at 1 g/L inhibits between 63.44 and 99.75% of the microbial biofilm depending on the tested strains. These promising results confirm the potential deployment of the obtained chitosan in the food industry as a replacement for synthetic antimicrobial agents.


Asunto(s)
Antiinfecciosos , Quitosano , Animales , Quitosano/farmacología , Quitosano/química , Hidróxido de Sodio , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Bacterias , Hongos , Crustáceos , Biopolímeros , Biopelículas , Pruebas de Sensibilidad Microbiana
8.
Plants (Basel) ; 12(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37653880

RESUMEN

Fusarium oxysporum is the one of the most common and impactful pathogens of flax. Cultivars of flax that show resistance to this pathogen have previously been identified. To better understand the mechanisms that are responsible for this resistance, we conducted time-lapse analysis of one susceptible and one resistant cultivar over a two-week period following infection. We also monitored changes in some metabolites. The susceptible cultivar showed a strong onset of symptoms from 6 to 8 days after inoculation, which at this time point, was associated with changes in metabolites in both cultivars. The resistant cultivar maintained its height and normal photosynthetic capacity but showed a reduced growth of its secondary stems. This resistance was correlated with the containment of the pathogen at the root level, and an increase in some metabolites related to the phenylpropanoid pathway.

9.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37202370

RESUMEN

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Asunto(s)
Arabidopsis , Poligalacturonasa , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Proteínas/metabolismo , Pared Celular/metabolismo
10.
Mar Drugs ; 21(4)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37103384

RESUMEN

The aim of this study was to identify the chemical composition and sequential structure of alginate isolated from C. crinita harvested in the Bulgarian Black Sea, as well as its effects in histamine-induced paw inflammation in rats. The serum levels of TNF-α, IL-1ß, IL-6, and IL-10 in rats with systemic inflammation, and the levels of TNF-α in a model of acute peritonitis in rats were also investigated. The structural characterization of the polysaccharide was obtained by FTIR, SEC-MALS, and 1H NMR. The extracted alginate had an M/G ratio of 1.018, a molecular weight of 7.31 × 104 g/mol, and a polydispersity index of 1.38. C. crinita alginate in doses of 25 and 100 mg/kg showed well-defined anti-inflammatory activity in the model of paw edema. A significant decrease in serum levels of IL-1ß was observed only in animals treated with C. crinita alginate in a dose of 25 mg/kg bw. The concentrations of TNF-α and IL-6 in serum were significantly reduced in rats treated with both doses of the polysaccharide, but no statistical significance was observed in the levels of the anti-inflammatory cytokine IL-10. A single dose of alginate did not significantly alter the levels of the pro-inflammatory cytokine TNF-α in the peritoneal fluid of rats with a model of peritonitis.


Asunto(s)
Peritonitis , Phaeophyceae , Ratas , Animales , Alginatos/efectos adversos , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Mar Negro , Bulgaria , Antiinflamatorios , Citocinas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Peritonitis/inducido químicamente , Peritonitis/tratamiento farmacológico , Polisacáridos/química , Edema/tratamiento farmacológico
11.
Metabolites ; 13(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36837894

RESUMEN

Pistacia lentiscus L. is a medicinal plant that grows spontaneously throughout the Mediterranean basin and is traditionally used to treat diseases, including diabetes. The aim of this work consists of the evaluation of the α-glucosidase inhibitory effect (i.e., antidiabetic activity in vitro) of different extracts from the leaves, stem barks and fruits of P. lentiscus harvested on mountains and the littoral of Tizi-Ouzou in Algeria. Metabolomic profiling combined with a chemometric approach highlighted the variation of the antidiabetic properties of P. lentiscus according to the plant's part and origin. A multiblock OPLS analysis showed that the metabolites most involved in α-glucosidase inhibition activity were mainly found in the stem bark extracts. The highest inhibitory activity was found for the stem bark extracts, with averaged inhibition percentage values of 84.7% and 69.9% for the harvested samples from the littoral and mountain, respectively. On the other hand, the fruit extracts showed a lower effect (13.6%) at both locations. The UHPLC-ESI-HRMS characterization of the metabolites most likely responsible for the α-glucosidase-inhibitory activity allowed the identification of six compounds: epigallocatechin(4a>8)epigallocatechin (two isomers), (epi)gallocatechin-3'-O-galloyl-(epi)gallocatechin (two isomers), 3,5-O-digalloylquinic acid and dihydroxy benzoic acid pentoside.

12.
Int J Biol Macromol ; 231: 123137, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36639075

RESUMEN

Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.


Asunto(s)
Simulación de Dinámica Molecular , Polisacárido Liasas , Polisacárido Liasas/química , Glicósidos , Pectinas/química , Especificidad por Sustrato
13.
Phytochemistry ; 205: 113508, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370882

RESUMEN

The hop plant (Humulus lupulus L.) has been exploited for a long time for both its brewing and medicinal uses, due in particular to its specific chemical composition. These last years, hop cultivation that was in decline has been experiencing a renewal for several reasons, such as a craze for strongly hopped aromatic beers. In this context, the present work aims at investigating the genetic and chemical diversity of fifty wild hops collected from different locations in Northern France. These wild hops were compared to ten commercial varieties and three heirloom varieties cultivated in the same sampled geographical area. Genetic analysis relying on genome fingerprinting using 11 microsatellite markers showed a high level of diversity. A total of 56 alleles were determined with an average of 10.9 alleles per locus and assessed a significant population structure (mean pairwise FST = 0.29). Phytochemical characterization of hops was based on volatile compound analysis by HS-SPME GC-MS, quantification of the main prenylated phenolic compounds by UHPLC-UV as well as untargeted metabolomics by UHPLC-HRMS and revealed a high level of chemical diversity among the assessed wild accessions. In particular, analysis of volatile compounds revealed the presence of some minor but original compounds, such as aromadendrene, allo-aromadendrene, isoledene, ß-guaiene, α-ylangene and ß-pinene in some wild accessions; while analysis of phenolic compounds showed high content of ß-acids in these wild accessions, up to 2.37% of colupulone. Genetic diversity of wild hops previously observed was hence supported by their chemical diversity. Sample soil analysis was also performed to get a pedological classification of these different collection sites. Results of the multivariate statistical analysis suggest that wild hops constitute a huge pool of chemical and genetic diversity of this species.


Asunto(s)
Humulus , Humulus/genética , Análisis Multivariante , Variación Genética
14.
Mar Drugs ; 20(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421993

RESUMEN

The aim of this study was to evaluate the effects of fucoidan isolated from C. crinita on histamine-induced paw inflammation in rats, and on the serum levels of TNF-α, IL-1ß, IL-6, and IL-10 in rats during systemic inflammation response. The levels of TNF-α in a model of acute peritonitis in rats were also investigated. The isolated crude fucoidan was identified as a sulfated xylogalactofucan with high, medium, and low molecular weight fractions and a content of fucose of 39.74%, xylose of 20.75%, and galactose of 15.51%. Fucoidan from C. crinita showed better anti-inflammatory effects in the rat paw edema model, and this effect was present during all stages of the experiment. When compared to controls, a commercial fucoidan from F. vesiculosus, the results also displayed anti-inflammatory activity on the 60th, 90th, and 120th minute of the experiment. A significant decrease in serum levels of IL-1ß in rats treated with both doses of C. crinita fucoidan was observed in comparison to controls, whereas TNF-α concentrations were reduced only in the group treated with fucoidan from C. crinita at the dose of 25 mg/kg bw. In the model of carrageenan-induced peritonitis, we observed a tendency of decrease in the levels of the pro-inflammatory cytokine TNF-α in peritoneal fluid after a single dose of C. crinita fucoidan, but this did not reach the statistical significance margin. Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory cytokine IL-10 in animals with lipopolysaccharide-induced systemic inflammation.


Asunto(s)
Antiinflamatorios , Inflamación , Peritonitis , Phaeophyceae , Animales , Ratas , Antiinflamatorios/farmacología , Citocinas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Interleucina-10 , Peritonitis/inducido químicamente , Peritonitis/tratamiento farmacológico , Phaeophyceae/química , Factor de Necrosis Tumoral alfa
15.
ACS Omega ; 7(40): 35851-35862, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36249367

RESUMEN

Plants are an everlasting inspiration source of biologically active compounds. Among these medicinal plants, the biological activity of extracts from some species of the Tillandsia genus has been studied, but the phytochemistry of the hardy species Tillandsia bergeri remains unknown. The aim of the present study was to perform the first phytochemical study of T. bergeri and to identify the compounds responsible for the antibacterial activity of T. bergeri extracts. Soxhlet extraction of predried and grinded leaves was first performed using four increasing polarity solvents. A bio-guided fractionation was performed using agar overlay bioautography as a screening method against 12 Gram-positive, Gram-negative, sensitive, and resistant bacterial strains. The results showed the inhibition of Gram-positive methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA), methicillin-resistant S. aureus N-SARM-1 (MRSA), and Staphylococcus caprae ATCC 35538 by the dichloromethane fraction. A phytochemical investigation led to the isolation and identification by high-resolution mass spectrometry and nuclear magnetic resonance of the two flavones penduletin and viscosine, responsible for this antibacterial activity. For viscosine, the minimum inhibitory concentration (MIC) value is equal to 128 µg/mL against MSSA and is equal to 256 µg/mL against MRSA and S. caprae. The combination of these compounds with vancomycin and cloxacillin showed a decrease in MICs of the antibiotics. Penduletin showed synergistic activity when combined with vancomycin against MSSA (FICI < 0.258) and S. caprae (FICI < 0.5). Thus, unexplored Tillandsia species may represent a valuable source for potential antibiotics and adjuvants.

16.
Metabolites ; 12(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35888753

RESUMEN

VOCs emitted by flowers play an important role in plant ecology. In the past few years, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Hence, we decided to enlarge the VOCs composition study already undergone in our laboratory on fragrant 3 Tillandsia species to 12 unscented and 2 faint-scented Tillandsia species and hybrids. The headspace solid phase microextraction (HS-SPME) coupled with gas chromatography combined with the mass spectrometry (GC-MS) method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the 14 species and between 6 to 25 compounds were identified in each of the species. The aromatic profile of 10 of the species and hybrids are similar to each other's and show 8 predominant compounds: benzaldehyde, benzacetaldehyde, hexanol, hexanal, heptanal, octanal, nonanal, and furan-2-pentyl. Some specific compounds are present only in some unique species such as trans-calamenene, α-muurolene, and α-guaiene trans-ß-bergamotene. The two faint-scented species studied present an original aromatic profile with a high number of monoterpenes or phenylpropanoids/benzenoids. Our studies allow a better understanding of the ecological role and function of these VOCs in the interactions between these plants with their environment.

17.
Molecules ; 27(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807395

RESUMEN

Leaves of Pistacia lentiscus were collected from two Algerian sites in the mountains and the littoral of the Tizi-Ouzou region. The harvest was conducted in four consecutive seasons on the same selected set of trees. Essential oils (EOs) were extracted by hydrodistillation; then, they were analyzed by gas chromatography coupled mass spectrometry (GC-MS). Forty-seven constituents could be detected and quantified, including α-pinene (2-13%), ß-caryophyllene (8-25%), ß-myrcene (0.3-19%), bornyl acetate (0.8-7%), δ-cadinene (3-8%), bisabolol (1-9%), ß-pinene (0.9-7%), caryophyllene oxide (4-9%), and α-cadinol (3-11%). Antioxidant (AOx) activities of the EOs were assessed by ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) assays. Significant differences in EO composition and AOx activities appeared dependent on the season and the site. Variations of AOx activities were significant for the FRAP and ABTS tests but not for DPPH. Characterization of the leaf fatty acyl (FA) profiles was performed by GC-MS. Variability appeared according to season and altitude. Polyunsaturated fatty acids levels were high (27-55%) at the coldest date and place. The levels of linolenic acyl in the leaves were significantly correlated with bisabolol levels in the EOs (Spearman's correlation coefficient: 0.818). Such results will be useful for the sustainable local valorization of wild P. lentiscus. These data also open new routes for further studies on terpenoid biosynthesis using correlation networks and fluxomic approaches.


Asunto(s)
Aceites Volátiles , Pistacia , Argelia , Antioxidantes/química , Aceites Volátiles/química , Pistacia/química , Hojas de la Planta/química
18.
Plants (Basel) ; 11(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35684277

RESUMEN

Erismadelphus exsul Mildbr bark is widely used in Gabonese folk medicine. However, little is known about the active compounds associated with its biological activities. In the present study, phytochemical profiling of the ethanolic extract of Erismadelphus exsul was performed using a de-replication strategy by coupling HPLC-ESI-Q/TOF with a molecular network approach. Eight families of natural compounds were putatively identified, including cyclopeptide alkaloids, esterified amino acids, isoflavonoid- and flavonoid-type polyphenols, glycerophospholipids, steroids and their derivatives, and quinoline alkaloids. All these compounds were identified for the first time in this plant. The use of molecular networking obtained a detailed phytochemical overview of this species. Furthermore, antioxidant (2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and ferric reducing capacity (FRAP)) and in vitro antimicrobial activities were assessed. The crude extract, as well as fractions obtained from Erismadelphus exsul, showed a better reactivity to FRAP than DPPH. The fractions were two to four times more antioxidant than ascorbic acid while reacting to FRAP, and there was two to nine times less antioxidant than this reference while reacting to DPPH. In addition, several fractions and the crude extract exhibited a significant anti-oomycete activity towards the Solanaceae phytopathogen Phytophthora infestans in vitro, and, at a lower extent, the antifungal activity against the wheat pathogen Zymoseptoria tritici had growth inhibition rates ranging from 0 to 100%, depending on the tested concentration. This study provides new insights into the phytochemical characterization and the bioactivities of ethanolic extract from Erismadelphus exsul bark.

19.
Plant Physiol ; 189(4): 2029-2043, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604091

RESUMEN

Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.


Asunto(s)
Aciltransferasas , Cichorium intybus , Aciltransferasas/genética , Aciltransferasas/metabolismo , Alquenos , Compuestos Aza , Cichorium intybus/genética , Cichorium intybus/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
20.
Molecules ; 27(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408773

RESUMEN

In vitro culture of flax (Linum usitatissimum L.) was exposed to chitosan oligosaccharides (COS) in order to investigate the effects on the growth and secondary metabolites content in roots and shoots. COS are fragments of chitosan released from the fungal cell wall during plant-pathogen interactions. They can be perceived by the plant as pathogen-associated signals, mediating local and systemic innate immune responses. In the present study, we report a novel COS oligosaccharide fraction with a degree of polymerization (DP) range of 2-10, which was produced from fungal chitosan by a thermal degradation method and purified by an alcohol-precipitation process. COS was dissolved in hydroponic medium at two different concentrations (250 and 500 mg/L) and applied to the roots of growing flax seedlings. Our observations indicated that the growth of roots and shoots decreased markedly in COS-treated flax seedlings compared to the control. In addition, the results of a metabolomics analysis showed that COS treatment induced the accumulation of (neo)lignans locally at roots, flavones luteolin C-glycosides, and chlorogenic acid in systemic responses in the shoots of flax seedlings. These phenolic compounds have been previously reported to exhibit a strong antioxidant and antimicrobial activities. COS oligosaccharides, under the conditions applied in this study (high dose treatment with a much longer exposure time), can be used to indirectly trigger metabolic response modifications in planta, especially secondary metabolism, because during fungal pathogen attack, COS oligosaccharides are among the signals exchanged between the pathogen and host plant.


Asunto(s)
Quitosano , Lino , Pared Celular/metabolismo , Quitosano/farmacología , Lino/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Metabolismo Secundario , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...