Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Theranostics ; 14(9): 3693-3707, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948062

RESUMEN

Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.


Asunto(s)
Anhidrasa Carbónica IX , Carcinoma de Células Renales , Inhibidores de Puntos de Control Inmunológico , Neoplasias Renales , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/patología , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Neoplasias Renales/terapia , Neoplasias Renales/radioterapia , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Humanos , Línea Celular Tumoral , Radioisótopos/uso terapéutico , Radioisótopos/farmacología , Radioisótopos/administración & dosificación , Lutecio/uso terapéutico , Femenino , Antígenos de Neoplasias/metabolismo , Distribución Tisular , Microambiente Tumoral/efectos de los fármacos , Proteína Tumoral Controlada Traslacionalmente 1 , Ensayos Antitumor por Modelo de Xenoinjerto , Terapia Combinada/métodos , Ratones Endogámicos BALB C , Anticuerpos Monoclonales
2.
J Immunother Cancer ; 11(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37899133

RESUMEN

BACKGROUND: CD3 bispecific antibodies (CD3-bsAbs) require binding of both a tumor-associated surface antigen and CD3 for their immunotherapeutic effect. Their efficacy is, therefore, influenced by the tumor uptake and the extracellular dose. To optimize their currently limited efficacy in solid tumors, increased understanding of their pharmacokinetics and in vivo internalization is needed. METHODS: Here, were studied the pharmacokinetics and in vivo internalization of CD3xTRP1, a fully murine Fc-inert bsAb, in endogenous TRP1-expressing immunocompetent male C57BL/6J mice bearing TRP1-positive and negative tumors over time. Matching bsAbs lacking TRP1-binding or CD3-binding capacity served as controls. BsAbs were radiolabeled with 111In to investigate their pharmacokinetics, target binding, and biodistribution through SPECT/CT imaging and ex vivo biodistribution analyses. Co-injection of 111In- and 125I-labeled bsAb was performed to investigate the in vivo internalization by comparing tissue concentrations of cellular residing 111In versus effluxing 125I. Antitumor therapy effects were evaluated by monitoring tumor growth and immunohistochemistry. RESULTS: SPECT/CT and biodistribution analyses showed that CD3xTRP1 specifically targeted TRP1-positive tumors and CD3-rich lymphoid organ and uptake peaked 24 hours pi (KPC3-TRP1: 37.7%ID/g±5.3%ID/g, spleen: 29.0%ID/g±3.9%ID/g). Studies with control bsAbs demonstrated that uptake of CD3xTRP1 in TRP1-positive tumors and CD3-rich tissues was primarily receptor-mediated. Together with CD3xTRP1 in the circulation being mainly unattached, this indicates that CD3+ T cells are generally not traffickers of CD3-bsAbs to the tumor. Additionally, target-mediated clearance by TRP1-expressing melanocytes was not observed. We further demonstrated rapid internalization of CD3xTRP1 in KPC3-TRP1 tumors (24 hours pi: 54.9%±2.3% internalized) and CD3-rich tissues (spleen, 24 hours pi: 79.7%±0.9% internalized). Therapeutic effects by CD3xTRP1 were observed for TRP1-positive tumors and consisted of high tumor influx of CD8+ T cells and neutrophils, which corresponded with increased necrosis and growth delay. CONCLUSIONS: We show that CD3xTRP1 efficiently targets TRP1-positive tumors and CD3-rich tissues primarily through receptor-mediated targeting. We further demonstrate rapid receptor-mediated internalization of CD3xTRP1 in TRP1-positive tumors and CD3-rich tissues. Even though this significantly decreases the therapeutical available dose, CD3xTRP1 still induced effective antitumor T-cell responses and inhibited tumor growth. Together, our data on the pharmacokinetics and mechanism of action of CD3xTRP1 pave the way for further optimization of CD3-bsAb therapies.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Masculino , Ratones , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Linfocitos T CD8-positivos , Distribución Tisular , Complejo CD3 , Ratones Endogámicos C57BL , Antígenos de Neoplasias , Modelos Animales de Enfermedad
4.
Front Immunol ; 13: 837370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359962

RESUMEN

Background: Programmed death-ligand 1 (PD-L1) regulates immune homeostasis by promoting T-cell exhaustion. It is involved in chronic infections and tumor progression. Nuclear imaging using radiolabeled anti-PD-L1 antibodies can monitor PD-L1 tissue expression and antibody distribution. However, physiological PD-L1 can cause rapid antibody clearance from blood at imaging doses. Therefore, we hypothesized that inflammatory responses, which can induce PD-L1 expression, affect anti-PD-L1 antibody distribution. Here, we investigated the effects of three different infectious stimuli on the pharmacokinetics and tumor targeting of radiolabeled anti-PD-L1 antibodies in tumor-bearing mice. Materials/Methods: Anti-mouse-PD-L1 and isotype control antibodies were labelled with indium-111 ([111In]In-DTPA-anti-mPD-L1 and [111In]In-DTPA-IgG2a, respectively). We evaluated the effect of inflammatory responses on the pharmacokinetics of [111In]In-DTPA-anti-mPD-L1 in RenCa tumor-bearing BALB/c mice in three conditions: lipopolysaccharide (LPS), local Staphylococcus aureus, and heat-killed Candida albicans. After intravenous injection of 30 or 100 µg of [111In]In-DTPA-anti-mPD-L1 or [111In]In-DTPA-IgG2a, blood samples were collected 1, 4, and 24 h p.i. followed by microSPECT/CT and ex vivo biodistribution analyses. PD-L1 expression, neutrophil, and macrophage infiltration in relevant tissues were evaluated immunohistochemically. Results: In 30 µg of [111In]In-DTPA-anti-mPD-L1 injected tumor-bearing mice the LPS-challenge significantly increased lymphoid organ uptake compared with vehicle controls (spleen: 49.9 ± 4.4%ID/g versus 21.2 ± 6.9%ID/g, p < 0.001), resulting in lower blood levels (3.6 ± 1.6%ID/g versus 11.5 ± 7.2%ID/g; p < 0.01) and reduced tumor targeting (8.1 ± 4.5%ID/g versus 25.2 ± 5.2%ID/g, p < 0.001). Local S. aureus infections showed high PD-L1+ neutrophil influx resulting in significantly increased [111In]In-DTPA-anti-mPD-L1 uptake in affected muscles (8.6 ± 2.6%ID/g versus 1.7 ± 0.8%ID/g, p < 0.001). Heat-killed Candida albicans (Hk-C. albicans) challenge did not affect pharmacokinetics. Increasing [111In]In-DTPA-anti-mPD-L1 dose to 100 µg normalized blood clearance and tumor uptake in LPS-challenged mice, although lymphoid organ uptake remained higher. Infectious stimuli did not affect [111In]In-DTPA-IgG2a pharmacokinetics. Conclusions: This study shows that anti-PD-L1 antibody pharmacokinetics and tumor targeting can be significantly altered by severe inflammatory responses, which can be compensated for by increasing the tracer dose. This has implications for developing clinical PD-L1 imaging protocols in onco-immunology. We further demonstrate that radiolabeled anti-PD-L1 antibodies can be used to evaluate PD-L1 expression changes in a range of infectious diseases. This supports the exploration of using these techniques to assess hosts' responses to infectious stimuli.


Asunto(s)
Enfermedades Transmisibles , Neoplasias , Animales , Antígeno B7-H1/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulina G/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Ácido Pentético , Staphylococcus aureus , Distribución Tisular
5.
J Nanobiotechnology ; 20(1): 64, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109860

RESUMEN

BACKGROUND: While immune checkpoint inhibitors such as anti-PD-L1 antibodies have revolutionized cancer treatment, only subgroups of patients show durable responses. Insight in the relation between clinical response, PD-L1 expression and intratumoral localization of PD-L1 therapeutics could improve patient stratification. Therefore, we present the modular synthesis of multimodal antibody-based imaging tools for multiscale imaging of PD-L1 to study intratumoral distribution of PD-L1 therapeutics. RESULTS: To introduce imaging modalities, a peptide containing a near-infrared dye (sulfo-Cy5), a chelator (DTPA), an azide, and a sortase-recognition motif was synthesized. This peptide and a non-fluorescent intermediate were used for site-specific functionalization of c-terminally sortaggable mouse IgG1 (mIgG1) and Fab anti-PD-L1. To increase the half-life of the Fab fragment, a 20 kDa PEG chain was attached via strain-promoted azide-alkyne cycloaddition (SPAAC). Biodistribution and imaging studies were performed with 111In-labeled constructs in 4T1 tumor-bearing mice. Comparing our site-specific antibody-conjugates with randomly conjugated antibodies, we found that antibody clone, isotype and method of DTPA conjugation did not change tumor uptake. Furthermore, addition of sulfo-Cy5 did not affect the biodistribution. PEGylated Fab fragment displayed a significantly longer half-life compared to unPEGylated Fab and demonstrated the highest overall tumor uptake of all constructs. PD-L1 in tumors was clearly visualized by SPECT/CT, as well as whole body fluorescence imaging. Immunohistochemistry staining of tumor sections demonstrated that PD-L1 co-localized with the fluorescent and autoradiographic signal. Intratumoral localization of the imaging agent could be determined with cellular resolution using fluorescent microscopy. CONCLUSIONS: A set of molecularly defined multimodal antibody-based PD-L1 imaging agents were synthesized and validated for multiscale monitoring of PD-L1 expression and localization. Our modular approach for site-specific functionalization could easily be adapted to other targets.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Inmunoconjugados/metabolismo , Inmunohistoquímica , Ratones , Neoplasias/diagnóstico por imagen , Distribución Tisular
6.
J Nucl Med ; 61(2): 270-275, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31519800

RESUMEN

Arteriovenous malformations (AVMs) have an inherent capacity to form new blood vessels, resulting in excessive lesion growth, and this process is further triggered by the release of angiogenic factors. 68Ga-labeled arginine-glycine-aspartate tripeptide sequence (RGD) PET/CT imaging may provide insight into the angiogenic status and treatment response of AVMs. This clinical feasibility study was performed to demonstrate that 68Ga-RGD PET/CT imaging can be used to quantitatively assess angiogenesis in peripheral AVMs. Methods: Ten patients with a peripheral AVM (mean age, 40 y; 4 men and 6 women) and scheduled for endovascular embolization treatment were prospectively included. All patients underwent 68Ga-RGD PET/CT imaging 60 min after injection (mean dose, 207 ± 5 MBq). Uptake in the AVM, blood pool, and muscle was quantified as SUVmax and SUVpeak, and a descriptive analysis of the PET/CT images was performed. Furthermore, immunohistochemical analysis was performed on surgical biopsy sections of peripheral AVMs to investigate the expression pattern of integrin αvß3Results:68Ga-RGD PET/CT imaging showed enhanced uptake in all AVM lesions (mean SUVmax, 3.0 ± 1.1; mean SUVpeak, 2.2 ± 0.9). Lesion-to-blood and lesion-to-muscle ratios were 3.5 ± 2.2 and 4.6 ± 2.8, respectively. Uptake in blood and muscle was significantly higher in AVMs than in background tissue (P = 0.0006 and P = 0.0014, respectively). Initial observations included uptake in multifocal AVM lesions and enhanced uptake in intraosseous components in those AVM cases affecting bone integrity. Immunohistochemical analysis revealed cytoplasmatic and membranous integrin αvß3 expression in the endothelial cells of AVMs. Conclusion: This feasibility study showed increased uptake in AVMs with angiogenic activity, compared with surrounding tissue without angiogenic activity, suggesting that 68Ga-RGD PET/CT imaging can be used as a tool to quantitatively determine angiogenesis in AVMs. Further studies will be conducted to explore the potential of 68Ga-RGD PET/CT imaging for guiding current treatment decisions and for assessing response to antiangiogenic treatment.


Asunto(s)
Malformaciones Arteriovenosas/diagnóstico por imagen , Neovascularización Patológica/diagnóstico por imagen , Oligopéptidos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Malformaciones Arteriovenosas/complicaciones , Malformaciones Arteriovenosas/metabolismo , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neovascularización Patológica/complicaciones , Oligopéptidos/metabolismo , Estudios Prospectivos , Transporte de Proteínas , Adulto Joven
7.
Pharmaceutics ; 11(5)2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31137479

RESUMEN

The use of nanoparticles as tumor-targeting agents is steadily increasing, and the influence of nanoparticle characteristics such as size and stealthiness have been established for a large number of nanocarrier systems. However, not much is known about the impact of tumor presence on nanocarrier circulation times. This paper reports on the influence of tumor presence on the in vivo circulation time and biodistribution of polybutadiene-polyethylene oxide (PBd-PEO) polymersomes. For this purpose, polymersomes were loaded with the gamma-emitter 111In and administered intravenously, followed by timed ex vivo biodistribution. A large reduction in circulation time was observed for tumor-bearing mice, with a circulation half-life of merely 5 min (R2 = 0.98) vs 117 min (R2 = 0.95) in healthy mice. To determine whether the rapid polymersome clearance observed in tumor-bearing mice was mediated by macrophages, chlodronate liposomes were administered to both healthy and tumor-bearing mice prior to the intravenous injection of radiolabeled polymersomes to deplete their macrophages. Pretreatment with chlodronate liposomes depleted macrophages in the spleen and liver and restored the circulation time of the polymersomes with no significant difference in circulation time between healthy mice and tumor-bearing mice pretreated with clodronate liposomes (15.2 ± 1.2% ID/g and 13.6 ± 2.7% ID/g, respectively, at 4 h p.i. with p = 0.3). This indicates that activation of macrophages due to tumor presence indeed affected polymersome clearance rate. Thus, next to particle design, the presence of a tumor can also greatly impact circulation times and should be taken into account when designing studies to evaluate the distribution of polymersomes.

8.
Cancer Immunol Res ; 7(1): 150-161, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30459153

RESUMEN

Antibodies that block the interaction between programmed death ligand 1 (PD-L1) and PD-1 have shown impressive responses in subgroups of patients with cancer. PD-L1 expression in tumors seems to be a prerequisite for treatment response. However, PD-L1 is heterogeneously expressed within tumor lesions and may change upon disease progression and treatment. Imaging of PD-L1 could aid in patient selection. Previously, we showed the feasibility to image PD-L1+ tumors in immunodeficient mice. However, PD-L1 is also expressed on immune cell subsets. Therefore, the aim of this study was to assess the potential of PD-L1 micro single-photon emission tomography/computed tomography (microSPECT/CT) using radiolabeled PD-L1 antibodies to (i) measure PD-L1 expression in two immunocompetent tumor models (syngeneic mice and humanized mice harboring PD-L1 expressing immune cells) and (ii) monitor therapy-induced changes in tumor PD-L1 expression. We showed that radiolabeled PD-L1 antibodies accumulated preferentially in PD-L1+ tumors, despite considerable uptake in certain normal lymphoid tissues (spleen and lymph nodes) and nonlymphoid tissues (duodenum and brown fat). PD-L1 microSPECT/CT imaging could also distinguish between high and low PD-L1-expressing tumors. The presence of PD-L1+ immune cells did not compromise tumor uptake of the human PD-L1 antibodies in humanized mice, and we demonstrated that radiotherapy-induced upregulation of PD-L1 expression in murine tumors could be monitored with microSPECT/CT imaging. Together, these data demonstrate that PD-L1 microSPECT/CT is a sensitive technique to detect variations in tumor PD-L1 expression, and in the future, this technique may enable patient selection for PD-1/PD-L1-targeted therapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Animales , Anticuerpos Monoclonales/farmacocinética , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Radioisótopos de Indio , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único
9.
J Nucl Med ; 59(3): 494-501, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29146698

RESUMEN

Prostate cancer (PCa) is the most common cancer in men worldwide. In general, PCa responds poorly to chemotherapy. Therefore, antibody-drug conjugates (ADCs) have been developed to specifically deliver highly cytotoxic drugs to the tumor. Because the prostate-specific membrane antigen (PSMA) is overexpressed in PCa, it represents a promising target for ADC-based therapies. The aim of this study was to evaluate the therapeutic efficacy of site-specifically conjugated duocarmycin- and monomethyl auristatin E (MMAE)-based anti-PSMA ADCs with drug-to-antibody ratios (DARs) of 2 and 4. Methods: The glycan group of the anti-PSMA antibody D2B was chemoenzymatically conjugated with duocarmycin or MMAE. Preservation of the immunoreactivity of the antibody on site-specific conjugation was investigated in vitro. Biodistribution and small-animal SPECT/CT imaging (18.5 ± 2.6 MBq) with 25 µg of 111In-labeled ADCs were performed on BALB/c nude mice with subcutaneous PSMA-positive LS174T-PSMA xenografts. Finally, the therapeutic efficacy of the 4 different ADCs was assessed in mice with LS174T-PSMA tumors. Results: The immunoreactivity of the anti-PSMA antibody was preserved on site-specific conjugation. Biodistribution revealed high tumor uptake of all agents. The highest tumor uptake was observed in mice administered with 111In-D2B-DAR2-MMAE, reaching 119.7 ± 37.4 percentage injected dose per gram at 3 d after injection. Tumors of mice injected with 111In-D2B, 111In-D2B-DAR2-duocarmycin, 111In-D2B-DAR4-duocarmycin, 111In-D2B-DAR2-MMAE, and 111In-D2B-DAR4-MMAE could clearly be visualized with small-animal SPECT/CT. In contrast to unconjugated D2B or vehicle, treatment with either of the MMAE-based ADCs, but not with a duocarmycin-based ADC, significantly impaired tumor growth and prolonged median survival from 13 d (phosphate-buffered saline) to 20 and 29 d for DAR2 and DAR4 ADC, respectively. Tumor-doubling time increased from 3.5 ± 0.5 d to 5.2 ± 1.8 and 9.2 ± 2.1 d after treatment with D2B-DAR2-MMAE and D2B-DAR4-MMAE, respectively. Conclusion: The site-specifically conjugated anti-PSMA ADCs D2B-DAR2-MMAE and D2B-DAR4-MMAE efficiently targeted PSMA-expressing xenografts, effectively inhibited tumor growth of PSMA-expressing tumors, and significantly prolonged survival of mice.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glutamato Carboxipeptidasa II/metabolismo , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Indoles/química , Oligopéptidos/química , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Duocarmicinas , Inmunoconjugados/farmacocinética , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Pirrolidinonas/química , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular
10.
Cancer Biother Radiopharm ; 32(2): 67-73, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28301262

RESUMEN

BACKGROUND: Up to now, prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy mainly focused on ß-emitting radionuclides. Herein, two new 213Bi-labeled agents for PSMA-targeted α therapy of prostate cancer (PCa) are reported. METHODS: The biodistribution of 213Bi-labeled small-molecule inhibitor PSMA I&T and nanobody JVZ-008 was evaluated in mice bearing PSMA-positive LNCaP xenografts. DNA damage response was followed using LNCaP cells and LNCaP xenografts. RESULTS: In vitro, 213Bi-PSMA I&T and 213Bi-JVZ-008 therapy of LNCaP cells led to increased number of DNA double-strand breaks (DSBs), detected as 53BP1 and γH2AX nuclear foci. In vivo, tumor uptake of 213Bi-PSMA I&T and 213Bi-JVZ-008 was 5.75% ± 2.70%ID/g (injected dose per gram) and 2.68% ± 0.56%ID/g, respectively, with similar tumor-to-kidney ratios. Furthermore, both agents induced in vivo DSBs in the tumors, which were detected between 1 hour and 24 hours after injection. 213Bi-PSMA I&T induced significantly more DSBs than 213Bi-JVZ-008 (p < 0.01). CONCLUSIONS: 213Bi-PSMA I&T and 213Bi-JVZ-008 showed efficient and rapid tumor targeting and produced DSBs in PSMA-expressing LNCaP cells and xenografts. These promising results require further evaluation of 213Bi-labeled agents with regard to their therapeutic efficacy and toxicity for PCa therapy.


Asunto(s)
Bismuto/química , Roturas del ADN de Doble Cadena , Neoplasias de la Próstata/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/química , Radioisótopos/química , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente , Nanopartículas/química , Trasplante de Neoplasias , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Nucl Med ; 58(6): 926-933, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28232604

RESUMEN

Pretargeted radioimmunotherapy (PRIT) with the ß-emitting radionuclide 177Lu is an attractive approach to treat carcinoembryonic antigen (CEA)-expressing tumors. The therapeutic efficacy of PRIT might be improved using α-emitting radionuclides such as 213Bi. Herein, we report and compare the tumor-targeting properties and therapeutic efficacy of 213Bi and 177Lu for PRIT of CEA-expressing xenografts, using the bispecific monoclonal antibody TF2 (anti-CEA × anti-histamine-succinyl-glycine [HSG]) and the di-HSG-DOTA peptide IMP288. Methods: The in vitro binding characteristics of 213Bi-IMP288 were compared with those of 177Lu-IMP288. Tumor targeting of 213Bi-IMP288 and 177Lu-IMP288 was studied in mice bearing subcutaneous LS174T tumors that were pretargeted with TF2. Finally, the effect of 213Bi-IMP288 (6, 12, or 17 MBq) and 177Lu-IMP288 (60 MBq) on tumor growth and survival was assessed. Toxicity was determined by monitoring body weight, analyzing blood samples for hematologic and renal toxicity (hemoglobin, leukocytes, platelets, creatinine), and immunohistochemical analysis of the kidneys. Results: The in vitro binding characteristics of 213Bi-IMP288 (dissociation constant, 0.45 ± 0.20 nM) to TF2-pretargeted LS174T cells were similar to those of 177Lu-IMP288 (dissociation constant, 0.53 ± 0.12 nM). In vivo accumulation of 213Bi-IMP288 in LS174T tumors was observed as early as 15 min after injection (9.2 ± 2.0 percentage injected dose [%ID]/g). 213Bi-IMP288 cleared rapidly from the circulation; at 30 min after injection, the blood levels were 0.44 ± 0.28 %ID/g. Uptake in normal tissues was low, except for the kidneys, where uptake was 1.8 ± 1.1 %ID/g at 30 min after injection. The biodistribution of 213Bi-IMP288 was comparable to that of 177Lu-IMP288. Mice treated with a single dose of 213Bi-IMP288 or 177Lu-IMP288 showed significant inhibition of tumor growth. Median survival for the groups treated with phosphate-buffered saline, 6 MBq 213Bi-IMP288, 12 MBq 213Bi-IMP288, and 60 MBq 177Lu-IMP288 was 22, 31, 45, and 42 d, respectively. Mice receiving 17 MBq 213Bi-IMP288 showed significant weight loss, resulting in a median survival of only 24 d. No changes in hemoglobin, platelets, or leukocytes were observed in the treatment groups. However, immunohistochemical analysis of the kidneys of mice treated with 17 or 12 MBq 213Bi-IMP288 showed signs of tubular damage, indicating nephrotoxicity. Conclusion: To our knowledge, this study shows for the first time that PRIT with TF2 and 213Bi-IMP288 is feasible and at least as effective as 177Lu-IMP288. However, at higher doses, kidney toxicity was observed. Future studies are warranted to determine the optimal dosing schedule to improve therapeutic efficacy while reducing renal toxicity.


Asunto(s)
Antígeno Carcinoembrionario/inmunología , Neoplasias del Colon/inmunología , Neoplasias del Colon/radioterapia , Terapia Molecular Dirigida/métodos , Radioinmunoterapia/métodos , Radioisótopos/uso terapéutico , Partículas alfa/uso terapéutico , Animales , Partículas beta/uso terapéutico , Línea Celular Tumoral , Neoplasias del Colon/patología , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Resultado del Tratamiento
12.
Mol Imaging Biol ; 19(4): 540-549, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27798786

RESUMEN

PURPOSE: The aim of the study was to investigate the potential of diffusion-weighted magnetic resonance imaging (DW-MRI) and 3'-dexoy-3'-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) as early biomarkers of treatment response of 5-fluorouracil (5-FU) in a syngeneic rat model of colorectal cancer liver metastases. PROCEDURES: Wag/Rij rats with intrahepatic syngeneic CC531 tumors were treated with 5-FU (15, 30, or 60 mg/kg in weekly intervals). Before treatment and at days 1, 3, 7, and 14 after treatment rats underwent DW-MRI and [18F]FLT PET. Tumors were analyzed immunohistochemically for Ki67, TK1, and ENT1 expression. RESULTS: 5-FU inhibited the growth of CC531 tumors in a dose-dependent manner. Immunohistochemical analysis did not show significant changes in Ki67, TK1, and ENT1 expression. However, [18F]FLT SUVmean and SUVmax were significantly increased at days 4 and 7 after treatment with 5-FU (60 mg/kg) and returned to baseline at day 14 (SUVmax at days -1, 4, 7, and 14 was 1.1 ± 0.1, 2.3 ± 0.5, 2.3 ± 0.6, and 1.5 ± 0.4, respectively). No changes in [18F]FLT uptake were observed in the nontreated animals. Furthermore, the apparent diffusion coefficient (ADCmean) did not change in 5-FU-treated rats compared to untreated rats. CONCLUSION: This study suggests that 5-FU treatment induces a flare in [18F]FLT uptake of responsive CC531 tumors in the liver, while the ADCmean did not change significantly. Future studies in larger groups are warranted to further investigate whether [18F]FLT PET can discriminate between disease progression and treatment response.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Didesoxinucleósidos/uso terapéutico , Imagen de Difusión por Resonancia Magnética , Fluorouracilo/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/secundario , Tomografía de Emisión de Positrones , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Didesoxinucleósidos/farmacología , Modelos Animales de Enfermedad , Inmunohistoquímica , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Ratas , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
13.
Theranostics ; 6(6): 849-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27162555

RESUMEN

Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics-they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. (111)In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of (111)In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases; however, high renal and spleen uptake in control mice (no 2-PMPA) interfered with visualization of metastases in the vicinity of those organs. Coadministration of 2-PMPA increased the tumor-to-kidney absorbed dose ratio during (177)Lu-PSMA I&T radionuclide therapy. Hence, at equivalent absorbed dose to the tumor (36 Gy), coinjection of 2-PMPA decreased absorbed dose to the kidneys from 30 Gy to 12 Gy. Mice injected with (177)Lu-PSMA I&T only, showed signs of nephrotoxicity at 3 months after therapy, whereas mice injected with (177)Lu-PSMA I&T + 2-PMPA did not. These data indicate that PSMA I&T is a promising theranostic tool for PCa. PSMA-specific uptake in kidneys can be successfully tackled using blocking agents such as 2-PMPA.


Asunto(s)
Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Medicina de Precisión/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Radioterapia/métodos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Nanomedicina Teranóstica/métodos , Animales , Antígenos de Superficie , Modelos Animales de Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Masculino , Ratones , Radioisótopos/administración & dosificación , Radioisótopos/efectos adversos , Radioterapia/efectos adversos
14.
Cancer Res ; 75(14): 2928-36, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25977331

RESUMEN

Antibodies that block the interaction between programmed death ligand 1 (PD-L1) and PD-1 have shown impressive antitumor activity. Patients with tumors expressing PD-L1 are most likely to respond to this treatment. The aim of our study was to develop a noninvasive imaging technique to determine tumor PD-L1 expression in vivo. This could allow selection of patients that are most likely to benefit from anti-PD-1/PD-L1 treatment and to monitor PD-L1 expression during therapy. The monoclonal antibody PD-L1.3.1 was radiolabeled with Indium-111 ((111)In) and characterized using PD-L1-expressing MDA-MB-231 cells. Subsequently, the optimal antibody dose and time point for imaging was determined in mice with MDA-MB-231 xenografts. Finally, SPECT/CT imaging was performed in xenograft models with different PD-L1 expression levels and tumor sections were analyzed for PD-L1 expression using IHC. The optimal antibody dose of (111)In-PD-L1.3.1 (Kd = 1 nmol/L) for SPECT/CT imaging was ≤1 µg. Highest tumor-to-normal tissue contrast was obtained at days 3 and 7 after injection. (111)In-PD-L1.3.1 SPECT/CT showed efficient accumulation in high PD-L1-expressing tumors (MDA-MB-231 and SK-Br-3), whereas no specific uptake was observed in tumors with low or no detectable levels of PD-L1 (SUM149, BT474, and MCF-7). SPECT/CT and autoradiography showed a very heterogeneous distribution of (111)In-PD-L1.3.1 within the tumor. In conclusion, this is the first study showing the feasibility of noninvasive in vivo imaging of PD-L1 expression in tumors. (111)In-PD-L1.3.1 showed efficient and specific uptake in PD-L1 expressing xenografts. This technique may enable patient selection for PD-1 and PD-L1-targeted therapy.


Asunto(s)
Anticuerpos Monoclonales , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Radioisótopos de Indio , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Xenoinjertos , Humanos , Radioisótopos de Indio/metabolismo , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Unión Proteica , Distribución Tisular , Células Tumorales Cultivadas
15.
PLoS One ; 10(2): e0117745, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25680198

RESUMEN

INTRODUCTION: The insulin-like growth factor 1 receptor (IGF-1R) may be involved in the development of resistance against conventional cancer treatment. The aim of this study was to assess whether IGF-1R expression of breast tumors changes during neoadjuvant therapy and to study whether these changes were associated with survival. METHODS: Paraffin embedded tumor tissue was collected from pretreatment biopsies and surgical resections of 62 breast cancer patients who were treated with neoadjuvant chemotherapy or endocrine therapy. IGF-1R expression was determined immunohistochemically and compared before and after treatment. RESULTS: High membranous IGF-1R expression at diagnosis correlated significantly with ER positivity, low tumor stage (stage I/II) and longer overall survival (p < 0.05). After neoadjuvant treatment, membranous IGF-1R expression remained the same in 41 (65%) tumors, was upregulated in 11 (18%) tumors and downregulated in 11 (18%) tumors. Changes in membranous IGF-1R expression were associated with overall survival (log-rank test: p = 0.013, multivariate cox-regression: p = 0.086). Mean overall survival time for upregulation, no change, and downregulation in IGF-1R expression was 3.0 ± 0.5 years, 7.3 ± 1.0 years and 15.0 ± 1.8 years, respectively. Changes in other parameters were not significantly associated with survival. CONCLUSION: Neoadjuvant therapy can induce changes in IGF-1R expression. Upregulation of IGF-1R expression after neoadjuvant treatment is a poor prognostic factor in breast cancer patients, providing a rationale for incorporating anti-IGF-1R drugs in the management of these patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Receptor IGF Tipo 1/metabolismo , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Estudios de Seguimiento , Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Persona de Mediana Edad , Terapia Neoadyuvante , Estadificación de Neoplasias , Pronóstico , Receptor IGF Tipo 1/genética , Regulación hacia Arriba
16.
Mol Pharm ; 11(11): 4249-57, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25294389

RESUMEN

Bevacizumab and cetuximab are approved for the treatment of cancer. However, in advanced colorectal cancer, addition of cetuximab to chemotherapy with bevacizumab did not improve survival. The reason for the lack of activity remains unclear. The aim of this study was to determine the effect of cetuximab on VEGF expression and targeting of bevacizumab to the tumor. Mice with subcutaneous SUM149 or WiDr xenografts were treated with cetuximab, bevacizumab, or a combination of the two. Before the start of cetuximab treatment and after 7 and 21 days of treatment, the uptake of radiolabeled bevacizumab in the tumor was measured by immunoSPECT/CT. Tumor growth of SUM149 xenografts was significantly inhibited by cetuximab, bevacizumab, or their combination, whereas growth of WiDr xenografts was not affected. Cetuximab caused a significant reduction of bevacizumab uptake in SUM149 xenografts, whereas tumor-to-blood ratios in mice with WiDr xenografts did not change. Biodistribution studies with an irrelevant antibody in the SUM149 model also showed significantly reduced tumor-to-blood ratios. Cetuximab treatment did not decrease VEGF expression. Without decreasing VEGF levels, cetuximab reduces tumor targeting of bevacizumab. This could, at least partly, explain why the combination of bevacizumab and cetuximab does not result in improved therapeutic efficacy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Receptores ErbB/metabolismo , Terapia Molecular Dirigida , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Bevacizumab , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cetuximab , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Multimodal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Mol Imaging Biol ; 16(4): 529-37, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24532107

RESUMEN

PURPOSE: The aim was to assess changes in insulin-like growth factor 1 receptor (IGF-1R) expression with immunoSPECT/CT and to study the dynamics of IGF-1R expression of human breast tumors during endocrine treatment. PROCEDURES: Mice with MCF-7 xenografts were treated with estradiol or tamoxifen, and IGF-1R expression was measured by immunohistochemistry and immunoSPECT/CT using (111)In-R1507 (anti-IGF-1R antibody). Moreover, IGF-1R expression was analyzed immunohistochemically on 22 human breast tumors, treated preoperatively with endocrine therapy. RESULTS: Estradiol resulted in an increased expression of IGF-1R, as measured by immunohistochemistry and immunoSPECT/CT. In contrast, tamoxifen resulted in a downregulation of IGF-1R, whereas this could not be measured with immunoSPECT/CT. A downregulation was also detectable in 9 out of 22 (41 %) human breast tumors after endocrine therapy. CONCLUSIONS: Anti-estrogen treatment can cause a reduction in membranous IGF-1R expression. Based on these results, a combination of anti-IGF-1R antibodies with anti-estrogen therapy might not be a rational treatment strategy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Estradiol/uso terapéutico , Receptor IGF Tipo 1/metabolismo , Tamoxifeno/uso terapéutico , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama/patología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Estradiol/farmacología , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Persona de Mediana Edad , Receptor IGF Tipo 1/farmacología , Tamoxifeno/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Eur J Cancer ; 49(13): 2851-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23664098

RESUMEN

PURPOSE: To investigate whether F(ab')2-fragments of the monoclonal Insulin-like Growth Factor-1 Receptor (IGF-1R) antibody R1507 (F(ab')2-R1507) can successfully target IGF-1R in Ewing sarcomas (ES). MATERIALS AND METHODS: BALB/c nude mice were subcutaneously implanted with IGF-1R-expressing human ES xenografts (EW-5 and EW-8) which previously showed heterogeneous or no uptake of indium-111-labelled R1507 IgG ((111)In-R1507), respectively. Mice were injected with (111)In-F(ab')2-R1507 or (111)In-R1507 as a reference. Biodistribution and immuno-SPECT/computed tomography (CT) imaging studies were carried out 2, 4, 8 and 24 h post-injection (p.i.) for (111)In-F(ab')2-R1507 and 24 h p.i. for (111)In-R1507. RESULTS: Biodistribution studies showed specific accumulation of (111)In-F(ab')2-R1507 in EW-5 xenografts from t=2 h p.i. onwards (3.6 ± 0.2%ID/g at t = 24 h p.i.) and (111)In-F(ab')2-R1507 immuno-SPECT showed almost homogeneous intratumoural distribution at t=24h p.i. Tumour-to-blood ratios of (111)In-F(ab')2-R1507 were significantly higher than those of (111)In-R1507 at t=24 h p.i. (2.4 ± 0.4 versus 0.5 ± 0.1, respectively; p<0.05). More importantly, (111)In-F(ab')2-R1507 also specifically accumulated in EW-8 tumours (3.7 ± 0.7%ID/g at t = 24 h p.i). In both EW-5 and EW-8 tumours, there was a good spatial correlation between IGF-1R expression and (111)In-F(ab')2-R1507 tumour distribution. CONCLUSION: (111)In-F(ab')2-R1507 fragments can successfully target IGF-1R in ES models and have superior tumour penetrating and IGF-1R-targeting properties as compared to (111)In-R1507. This suggests that anti-IGF-1R therapies in ES and other tumours may be improved by using smaller therapeutic compounds, although further in vivo studies addressing this topic are warranted.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Fragmentos Fab de Inmunoglobulinas/farmacología , Receptor IGF Tipo 1/inmunología , Sarcoma de Ewing/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales Humanizados , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/inmunología , Neoplasias Óseas/metabolismo , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inyecciones Intravenosas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Sarcoma de Ewing/diagnóstico por imagen , Sarcoma de Ewing/inmunología , Sarcoma de Ewing/metabolismo , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Int J Cancer ; 133(2): 307-14, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23335047

RESUMEN

Bevacizumab (antivascular endothelial growth factor [anti-VEGF]) and cetuximab (antiepidermal growth factor receptor [anti-EGFR]) are approved antibodies for treatment of cancer. However, in advanced colorectal cancer, the combination fails to improve survival. As the reason for the lack of activity is unknown, our study aims to determine the effect of bevacizumab on targeting of anti-EGFR and insulin-like growth factor 1 receptor (IGF-1R) antibodies in tumors with single-photon emission computed tomography (SPECT)/CT imaging. Mice with subcutaneous EGFR and IGF-1R-expressing SUM149 xenografts received a single dose of bevacizumab (10 mg/kg) or saline. After 4 days, mice were injected with radiolabeled cetuximab or R1507, an anti-IGF-1R antibody. A control group received a radiolabeled irrelevant IgG (hLL2). Three days later, SPECT/CT images were acquired and mice were dissected to determine the concentration of antibodies in the tissues. Tumors were analyzed immunohistochemically to determine vascular density (CD34), VEGF, EGFR and IGF-1R expression. SPECT/CT imaging revealed that bevacizumab treatment significantly reduced tumor targeting of radiolabeled cetuximab by 40% from 33.1 ± 1.1 %ID/g to 19.8 ± 5.7 %ID/g (p = 0.009) for untreated and bevacizumab-treated tumors, respectively. A similar effect was found for (111) In-R1507: tumor targeting of R1507 decreased by 35%. No significant differences in tumor uptake were observed in mice that received an irrelevant IgG. Uptake in normal organs was not altered by bevacizumab. Immunohistochemical analysis showed that vascular density decreased with 43%, whereas EGFR and IGF-1R expression was unaltered. In conclusion, bevacizumab treatment significantly reduces tumor targeting of anti-EGFR and anti-IGF-1R antibodies. This emphasizes the importance of timing and sequencing of bevacizumab in combination with other antibodies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Receptores ErbB/inmunología , Terapia Molecular Dirigida , Receptor IGF Tipo 1/inmunología , Animales , Antígenos CD34/metabolismo , Bevacizumab , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cetuximab , Receptores ErbB/antagonistas & inhibidores , Femenino , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Multimodal , Trasplante de Neoplasias , Tomografía de Emisión de Positrones , Receptor IGF Tipo 1/antagonistas & inhibidores , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Tomografía Computarizada por Rayos X , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
20.
Mol Pharm ; 9(8): 2314-21, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22747077

RESUMEN

The insulin-like growth factor 1 receptor (IGF-1R) is a potential new target for the treatment of breast cancer. Patients with breast cancer lesions that express IGF-1R may benefit from treatment with anti-IGF-1R antibodies. IGF-1R expression can be visualized using radiolabeled R1507, a monoclonal antibody directed against IGF-1R. However, antibodies clear slowly from the circulation, resulting in low tumor-to-background ratios early after injection. Therefore, we aimed to accelerate targeting of IGF-1R using radiolabeled R1507 F(ab')2 and Fab fragments. In vitro, immunoreactivity, binding affinity and internalization of R1507 IgG, F(ab')2 and Fab were determined using the triple negative IGF-1R-expressing breast cancer cell line SUM149. In vivo, pharmacokinetics of (111)In-labeled R1507 IgG, F(ab')2 and Fab were studied in mice bearing subcutaneous SUM149 xenografts. SPECT/CT images were acquired and the biodistribution was measured ex vivo. The in vitro binding characteristics of radiolabeled R1507 IgG and F(ab')2 were comparable, whereas the affinity of Fab fragments was significantly lower (Kd: 0.6 nM, 0.7 nM and 3.0 nM for R1507 IgG, F(ab')2 and Fab, respectively). Biodistribution studies showed that the maximum tumor uptake of (111)In-R1507 IgG, F(ab')2 and Fab was 31.8% ID/g (72 h p.i.), 10.0% ID/g (6 h p.i.), and 1.8% ID/g (1 h p.i.), respectively. However, maximal tumor-to-blood ratios for F(ab')2 (24 h p.i.: 7.5) were more than twice as high as those obtained with R1507 (72 h p.i.: 2.8) and Fab (6 h p.i.: 2.8). Injection of an excess of unlabeled R1507 significantly reduced tumor uptake, suggesting that the uptake of R1507 IgG and F(ab')2 was specific for IGF-1R, while the major fraction of the tumor uptake of Fab was nonspecific. IGF-1R-expressing xenografts were visualized with (111)In-F(ab')2 SPECT/CT as early as 6 h p.i., while with R1507 IgG, the tumor could be visualized after 24 h. No specific targeting was observed with (111)In-Fab. (111)In-F(ab')2 fragments showed improved targeting of IGF-1R expressing tumors. Tumor-to-blood ratios were twice as high as those obtained with (111)In-R1507, and adequate tumor targeting on SPECT/CT images was observed as early as 6 h p.i. For individualization and optimization of IGF-1R targeted therapy, (111)In-F(ab')2 may be the tracer of choice.


Asunto(s)
Anticuerpos Monoclonales/química , Fragmentos Fab de Inmunoglobulinas/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...