Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 260(Pt 2): 129514, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237825

RESUMEN

Electrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.5 µm and 1.8 µm respectively. Hmi presence increased porosity from 80 % to 94 %, significantly reduced the number of defects, ensured the formation of a larger number of open pores, and improved mechanical properties. Hmi presence significantly improved the molding properties of the material. Hmi facilitated effective Fbg adsorption on the of the PHB wound-healing material, ensuring uniform localization of the protein on the surface of the fibers. Next, we evaluated cytocompatibility, cell behavior, and open wound healing in mice. The results demonstrated that PHB-Fbg and PHB-Hmi-Fbg electrospun materials had pronounced properties and may be promising for early-stage wound healing - the PHB-Hmi-Fbg sample accelerated wound closure by 35 % on the 3rd day, and PHB-Hmi showed 45 % more effective wound closure on the 15th day.


Asunto(s)
Materiales Biomiméticos , Hemostáticos , Ratones , Animales , Fibrinógeno , Cicatrización de Heridas , Materiales Biomiméticos/farmacología , Poliésteres/química
2.
Pharmaceutics ; 16(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38258135

RESUMEN

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

3.
Pharmaceutics ; 15(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37111769

RESUMEN

Photodynamic therapy (PDT) in oncology is characterized by low invasiveness, minimal side effects, and little tissue scarring. Increasing the selectivity of PDT agents toward a cellular target is a new approach intended to improve this method. This study is devoted to the design and synthesis of a new conjugate based on meso-arylporphyrin with a low-molecular-weight tyrosine kinase inhibitor, Erlotinib. A nano-formulation based on Pluronic F127 micelles was obtained and characterized. The photophysical and photochemical properties and biological activity of the studied compounds and their nano-formulation were studied. A significant, 20-40-fold difference between the dark and photoinduced activity was achieved for the conjugate nanomicelles. After irradiation, the studied conjugate nanomicelles were 1.8 times more toxic toward the EGFR-overexpressing cell line MDA-MB-231 compared to the conditionally normal NKE cells. The IC50 was 0.073 ± 0.014 µM for the MDA-MB-231 cell line and 0.13 ± 0.018 µM for NKE cells after irradiation for the target conjugate nanomicelles.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677989

RESUMEN

The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.

5.
Polymers (Basel) ; 16(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38201737

RESUMEN

Unsaturated fatty acids, such as oleic acid (OA) and linoleic acid (LA), are promising antimicrobial and cytostatic agents. We modified OA and LA with thymol (TOA and TLA, respectively) to expand their bioavailability, stability, and possible applications, and encapsulated these derivatives in polymeric nanoparticles (TOA-NPs and TLA-NPs, respectively). Prior to synthesis, we performed mathematical simulations with PASS and ADMETlab 2.0 to predict the biological activity and pharmacokinetics of TOA and TLA. TOA and TLA were synthesized via esterification in the presence of catalysts. Next, we formulated nanoparticles using the single-emulsion solvent evaporation technique. We applied dynamic light scattering, Uv-vis spectroscopy, release studies under gastrointestinal (pH 1.2-6.8) and blood environment simulation conditions (pH 7.4), and in vitro biological activity testing to characterize the nanoparticles. PASS revealed that TOA and TLA have antimicrobial and anticancer therapeutic potential. ADMETlab 2.0 provided a rationale for TOA and TLA encapsulation. The nanoparticles had an average size of 212-227 nm, with a high encapsulation efficiency (71-93%), and released TOA and TLA in a gradual and prolonged mode. TLA-NPs possessed higher antibacterial activity against B. cereus and S. aureus and pronounced cytotoxic activity against MCF-7, K562, and A549 cell lines compared to TOA-NPs. Our findings expand the biomedical application of fatty acids and provide a basis for further in vivo evaluation of designed derivatives and formulations.

6.
Pharmaceutics ; 14(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36365151

RESUMEN

Currently, molecular dynamics simulation is being widely applied to predict drug-polymer interaction, and to optimize drug delivery systems. Our study describes a combination of in silico and in vitro approaches aimed at improvement in polymer-based nanoparticle design for cancer treatment. We applied the PASS service to predict the biological activity of novel carboplatin derivatives. Subsequent molecular dynamics simulations revealed the dependence between the drug-polymer binding energy along with encapsulation efficacy, drug release profile, and the derivatives' chemical structure. We applied ICP-MS analysis, the MTT test, and hemolytic activity assay to evaluate drug loading, antitumor activity, and hemocompatibility of the formulated nanoparticles. The drug encapsulation efficacy varied from 0.2% to 1% and correlated with in silico modelling results. The PLGA nanoparticles revealed higher antitumor activity against A549 human non-small-cell lung carcinoma cells compared to non-encapsulated carboplatin derivatives with IC50 values of 1.40-23.20 µM and 7.32-79.30 µM, respectively; the similar cytotoxicity profiles were observed against H69 and MCF-7 cells. The nanoparticles efficiently induced apoptosis in A549 cells. Thus, nanoparticles loaded with novel carboplatin derivatives demonstrated high application potential for anticancer therapy due to their efficacy and high hemocompatibility. Our results demonstrated the combination of in silico and in vitro methods applicability for the optimization of encapsulation and antitumor efficacy in novel drug delivery systems design.

7.
Nanomedicine (Lond) ; 17(18): 1217-1235, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36136593

RESUMEN

Background: Serious side effects caused by paclitaxel formulation, containing toxic solubilizer Cremophor® EL, and its nonspecific accumulation greatly limit clinical paclitaxel application. Aim: To design paclitaxel-loaded copolymer of lactic and glycolic acids nanoparticles decorated with alpha-fetoprotein third domain (rAFP3d-NP) to increase paclitaxel safety profile. Methods: rAFP3d-NP was obtained via carbodiimide technique. Results: The particles were characterized with high paclitaxel loading content of 5% and size of 280 nm. rAFP3d-NP revealed biphasic profile with 67% release of paclitaxel during 220 h. Increased area under the curveinf and mean residence time values after rAFP3d-NP administration confirmed prolonged blood circulation compared with paclitaxel. rAFP3d-NP demonstrated significant tumor growth inhibition at 4T1 and SKOV-3 models. Conclusion: rAFP3d-NP is a promising delivery system for paclitaxel and can be applied similarly for delivery of other hydrophobic drugs.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , alfa-Fetoproteínas , Nanopartículas/química , Paclitaxel/química , Polímeros/química , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Portadores de Fármacos/química
8.
Pharmaceutics ; 14(3)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35335951

RESUMEN

Capsules with shells based on nanoparticles of different nature co-assembled at the interface of liquid phases of emulsion are promising carriers of lipophilic drugs. To obtain such capsules, theoretically using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and experimentally using dynamic light-scattering (DLS) and transmission electron microscopy (TEM) methods, the interaction of like-charged silica nanoparticles and detonation nanodiamonds in an aqueous solution was studied and their ratios selected for the formation of submicron-sized colloidosomes. The resulting colloidosomes were modified with additional layers of nanoparticles and polyelectrolytes, applying LbL technology. As a model anti-cancer drug, thymoquinone was loaded into the developed capsules, demonstrating a significant delay of the release as a result of colloidosome surface modification. Fluorescence flow cytometry and confocal laser scanning microscopy showed efficient internalization of the capsules by MCF7 cancer cells. The obtained results demonstrated a high potential for nanomedicine application in the field of the drug-delivery system development.

9.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613788

RESUMEN

A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.


Asunto(s)
Clorofilidas , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HeLa , Fotoquimioterapia/métodos , Porfirinas/farmacología , Porfirinas/química
10.
Antioxidants (Basel) ; 10(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34943088

RESUMEN

Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.

11.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830136

RESUMEN

The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.


Asunto(s)
Complejos de Coordinación/farmacocinética , Metaloporfirinas/farmacocinética , Metales/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Porfirinas/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Liberación de Fármacos , Femenino , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Células MCF-7 , Metaloporfirinas/química , Metaloporfirinas/farmacología , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Distribución Tisular , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...