Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 329: 121990, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37524159

RESUMEN

AIM: Parkinson's Disease (PD) is a common age-related neurodegenerative disorder with a rising prevalence. Human pluripotent stem cells have emerged as the most promising source of cells for midbrain dopaminergic (mDA) neuron replacement in PD. This study aimed to generate transplantable mDA progenitors for treatment of PD. MATERIALS AND METHODS: Here, we optimized and fine-tuned a differentiation protocol using a combination of small molecules and growth factors to induce mDA progenitors to comply with good manufacturing practice (GMP) guidelines based on our clinical-grade human embryonic stem cell (hESC) line. KEY FINDINGS: The resulting mDA progenitors demonstrated robust differentiation and functional properties in vitro. Moreover, cryopreserved mDA progenitors were transplanted into 6-hydroxydopamine-lesioned rats, leading to functional recovery. SIGNIFICANCE: We demonstrate that our optimized protocol using a clinical hESC line is suitable for generating clinical-grade mDA progenitors and provides the ground work for future translational applications.


Asunto(s)
Células Madre Embrionarias Humanas , Enfermedad de Parkinson , Células Madre Pluripotentes , Humanos , Ratas , Animales , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/fisiología , Diferenciación Celular , Dopamina/metabolismo , Mesencéfalo/metabolismo
2.
Stem Cell Rev Rep ; 18(8): 3008-3020, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35661078

RESUMEN

BACKGROUND: The human Y chromosome harbors genes that are mainly involved in the growth, development, sexual dimorphism, and spermatogenesis process. Despite many studies, the function of the male-specific region of the Y chromosome (MSY) awaits further clarification, and a cell-based approach can help in this regard. RESULTS: In this study, we have developed four stable transgenic male embryonic stem cell (ESCs) lines that can overexpress male-specific genes HSFY1, RBMY1A1, RPS4Y1, and SRY. As a proof of principle, we differentiated one of these cell lines (RPS4Y1 over-expressing ESCs) to the neural stem cell (rosette structure) and characterized them based on the expression level of lineage markers. RPS4Y1 expression in the Doxycycline-treated group was significantly higher than control groups at transcript and protein levels. Furthermore, we found Doxycycline-treated group had a higher differentiation efficiency than the untreated control groups. CONCLUSIONS: Our results suggest that the RPS4Y1 gene may play a critical role in neurogenesis. Also, the generated transgenic ESC lines can be widely employed in basic and preclinical studies, such as sexual dimorphism of neural and cardiac functions, the development of cancerous and non-cancerous disease models, and drug screening.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Masculino , Genes Ligados a Y , Doxiciclina/metabolismo , Células Madre Embrionarias , Neurogénesis/genética
4.
EMBO Rep ; 21(10): e47533, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33252195

RESUMEN

Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts. 2a2iL-hPSCs match several defined criteria of naïve-like pluripotency and contribute to human-mouse interspecies chimeras. Activation of TGF-ß signaling is instrumental for acquisition of naïve-like pluripotency by the 2a2iL induction procedure, and transient activation of TGF-ß signaling substitutes for 2a to generate naïve-like hPSCs. We reason that 2a2iL-hPSCs are an easily attainable system to evaluate properties of naïve-like hPSCs and for various applications.


Asunto(s)
Células Madre Pluripotentes , Animales , Blastocisto , Diferenciación Celular , Línea Celular , Humanos , Ratones , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Ácido Retinoico , Receptor de Ácido Retinoico gamma
5.
Biochem Biophys Res Commun ; 527(3): 811-817, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32446562

RESUMEN

The ability of human embryonic stem cells (hESCs) to proliferate unlimitedly and give rise to all tissues makes these cells a promising source for cell replacement therapies. To realize the full potential of hESCs in cell therapy, it is necessary to interrogate regulatory pathways that influence hESC maintenance and commitment. Here, we reveal that pharmacological attenuation of p38 mitogen-activated protein kinase (p38-MAPK) in hESCs concomitantly augments some characteristics associated with pluripotency and the expressions of early lineage markers. Moreover, this blockage capacitates hESCs to differentiate towards an endoderm lineage at the expense of other lineages upon spontaneous hESC differentiation. Notably, hESCs pre-treated with p38-MAPK inhibitor exhibit significantly improved pancreatic progenitor directed differentiation. Together, our findings suggest a new approach to the robust endoderm differentiation of hESCs and potentially enables the facile derivation of various endoderm-derived lineages such as pancreatic cells.


Asunto(s)
Endodermo/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Línea Celular , Endodermo/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Páncreas/citología , Páncreas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
J Proteome Res ; 18(12): 4254-4261, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31580082

RESUMEN

Although males and females have a variety of sexually dimorphic features related to hormonal effects, the genetic basis of dimorphism relies on early embryo development. Two pluripotent states, naïve and primed, emerge during early mammalian development. Identification of signaling pathways that induce differences between these two states can help to modulate conversion of primed cells to naïve cells. Naïve cells have a shorter doubling time and longer survival than their primed counterparts when passaged as single cells. In this study, we sought to explore the role of Y chromosome genes on human pluripotent stem cells (hPSCs) by investigating differential expressions of the male-specific region of the Y chromosome (MSY) genes in primed and naïve cells. Interestingly, we found that several MSY genes, including SRY, showed higher expression levels in primed compared to naïve human embryonic stem cells (hESCs). We hypothesize that SRY prevents WNT/ß-catenin signaling by its interaction and inhibition of ß-catenin activation in the nucleus. Results of the loss-of-function approach conducted by depletion of SRY indicated increased expressions of pluripotency marker genes and alkaline phosphatase (ALP) activity in the primed cells. SRY reduction was associated with overexpression of WNT signaling target genes AXIN2, Brachury, TCF1, TBX2, and TBX3. We suggest that inhibition of SRY may result in activation of ß-catenin and up-regulation of the WNT signaling pathway, both of which are important to naïve conversion.


Asunto(s)
Cromosomas Humanos Y , Células Madre Pluripotentes/fisiología , Proteína de la Región Y Determinante del Sexo/genética , Biomarcadores , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Células Madre Pluripotentes/citología , Transducción de Señal , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
7.
Cell J ; 20(3): 361-368, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29845790

RESUMEN

OBJECTIVE: Dual inhibition of mitogen-activated protein kinase (MAPK) kinase (also known as MEK) and transforming growth factor ß (TGFß) type I receptors by PD0325901 and SB431542, known as R2i has been introduced as a highly efficient approach to the generation of mouse embryonic stem cells (ESC). In the present study, we investigated the molecular mechanisms underlying ESC derivation in the R2i condition. MATERIALS AND METHODS: In this experimental study, zona-free whole E3.5 blastocysts were seeded on mouse embryonic fibroblast (MEF) feeder cells in both R2i and serum conventional media. The isolated inner cell mass (ICM), ESCs and the ICM-outgrowths were collected on days 3, 5 and 7 post-blastocyst culture for quantitative real timepolymerase chain reaction (qRT-PCR) analysis as well as to assess the DNA methylation status at the time points during the transition from ICM to ESC. RESULTS: qRT-PCR revealed a significantly higher expression of the pluripotency-related genes (Oct4, Nanog, Sox2, Rex1, Dppa3, Tcf3, Utf1, Nodal, Dax1, Sall4 and ß-Catenin) and lower expression of early differentiation genes (Gata6, Lefty2 and Cdx2) in R2i condition compared to the serum condition. Moreover, the upstream region of Oct4 and Nanog showed a progressive increase in methylation levels in the upstream regions of the genes following in R2i or serum conditions, followed by a decrease of DNA methylation in ESCs obtained under R2i. However, the methylation level of ICM outgrowths in the serum condition was much higher than R2i, at levels that could have a repressive effect and therefore explain the absence of expression of these two genes in the serum condition. CONCLUSION: Our investigation revealed that generation of ESCs in the ground-state of pluripotency could be achieved by inhibiting the MEK and TGF-ß signaling pathways in the first 5 days of ESC derivation.

8.
Stem Cell Reports ; 9(6): 2081-2096, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29129685

RESUMEN

Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the "miRNome" of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most "ground-state miRNAs" are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the Dlk1-Dio3 locus (miR-541-5p, miR-410-3p, and miR-381-3p) promoted pluripotency via inhibition of multi-lineage differentiation and stimulation of self-renewal. Overall, our results demonstrate that ground-state pluripotency is associated with a unique miRNA signature, which supports ground-state self-renewal by suppressing differentiation.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , MicroARNs/genética , Células Madre Pluripotentes/metabolismo , Animales , Proteínas de Unión al Calcio , Diferenciación Celular/genética , Linaje de la Célula/genética , Autorrenovación de las Células/genética , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Células Madre Pluripotentes/citología , Proteínas Represoras , Análisis de Secuencia de ARN , Factores de Transcripción
9.
Int J Dev Biol ; 60(4-6): 103-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27389983

RESUMEN

Histone H3 lysine 9 methylation has been shown to be a critical barrier to efficient cell reprogramming. This discovery allows the assessment of the cell pluripotency state by considering the extent of H3K9 methylation vs. acetylation at the same position. A set of pluripotent and differentiated human cells including embryonic stem cells, their differentiated and reprogrammed counterparts, along with human fibroblasts and their derived reprogrammed cells, were used to evaluate the ratio of total H3K9 methylation over acetylation using a quantitative ELISA-based approach. Also, the occurrence of the H3K4me3 and H3K27me3 bivalent marks was evaluated. Additionally, using ChIP-qPCR the occurrence of these histone marks on the regulatory regions of stemness genes (Nanog, Oct4 and Sox2) as well as on genes indicating fibroblast differentiation (Vim, COL1A1 and THY1) was evaluated. We evidence remarkably high ratios of H3K9ac/K9me2 in ES and iPS cells vs. differentiated cells. In iPSCs, a direct relationship between the ratios of total H3K9ac/H3K9me2 and the ratios of these marks on pluripotency gene regulatory regions and their expression was observed. In differentiated cells, in contrast, the ratios of global H3K9ac/K9me2 is low but the active genes escape this general situation and bear higher amounts of H3K9ac vs. H3K9me. Total H3K4me3/K27me3 ratios presented the same trends, but with reduced amplitudes. We propose that the rapid quantitative measurements of relative amounts of H3K9ac and K9me2 in iPS cells compared to the parental differentiated cells constitute a reliable and convenient criterion to rapidly assess the cell pluripotency potentials and the efficiency of cell reprogramming.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular , Metilación de ADN , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Acetilación , Células Madre Embrionarias/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología
10.
Sci Rep ; 5: 17985, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26671762

RESUMEN

The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Proteoma , Proteómica , Animales , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Análisis por Conglomerados , Biología Computacional , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Ratones , Células Madre Pluripotentes/citología , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos , Transducción de Señal
11.
Stem Cell Rev Rep ; 10(1): 16-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24036899

RESUMEN

Embryonic stem (ES) cells are considered to exist in a ground state if shielded from differentiation triggers. Here we show that FGF4 and TGFß signaling pathway inhibitors, designated R2i, not only provide the ground state pluripotency in production and maintenance of naïve ES cells from blastocysts of different mouse strains, but also maintain ES cells with higher genomic integrity following long-term cultivation compared with the chemical inhibition of the FGF4 and GSK3 pathways, known as 2i. Global transcriptome analysis of the ES cells highlights augmented BMP4 signaling pathway. The crucial role of the BMP4 pathway in maintaining the R2i ground state pluripotency is demonstrated by BMP4 receptor suppression, resulting in differentiation and cell death. In conclusion, by inhibiting TGFß and FGF signaling pathways, we introduce a novel defined approach to efficiently establish the ground state pluripotency.


Asunto(s)
Benzamidas/farmacología , Dioxoles/farmacología , Difenilamina/análogos & derivados , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Benzamidas/química , Células Cultivadas , Dioxoles/química , Difenilamina/química , Difenilamina/farmacología , Células Madre Embrionarias/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Células Madre Pluripotentes/metabolismo , Relación Estructura-Actividad , Factor de Crecimiento Transformador beta/metabolismo
12.
Mol Biosyst ; 8(6): 1833-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22543856

RESUMEN

Induced pluripotent stem cells (iPSCs) provide an invaluable resource for drug or toxicology screening, medical research and patient-specific cell therapy. However, the potential applications of iPSCs are largely dependent on the degree of similarity between iPSCs and embryonic stem cells (ESCs). In the present study, we analyzed the proteome of human ESCs and hiPSCs with different genetic background. We carried out an orthogonal contrast analysis of the proteome pattern of two human ESC lines (Royan H5 and Royan H6) and two hiPSC lines from a normal individual, three hiPSC lines from a normal individual with Bombay blood group phenotype, and two hiPSC lines from a patient with tyrosinemia. Forty-nine protein spots showed statistically significant differences between two human ESC lines and seven human iPSCs. Mass spectrometry analysis resulted in the identification of 48 proteins belonging to different biological processes, including cytoskeleton organization, energy and metabolic processes, protein synthesis and processing, signal transduction, cell growth and proliferation, cellular trafficking, transcription, calcium binding and immune response. Our results showed that hESCs and hiPSCs had subtle differences at the proteome level thus warranting more detailed and systematic examinations of these cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteoma/análisis , Sistema del Grupo Sanguíneo ABO/genética , Línea Celular , Células Cultivadas , Análisis por Conglomerados , Regulación hacia Abajo , Electroforesis en Gel Bidimensional , Células Madre Embrionarias/química , Humanos , Células Madre Pluripotentes Inducidas/química , Espectrometría de Masas , Fenotipo , Proteoma/química , Proteoma/clasificación , Proteómica , Tirosinemias/genética
13.
Nat Protoc ; 5(3): 588-94, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20203673

RESUMEN

Here we describe a simple and efficient human embryonic stem (ES) and induced pluripotent stem (iPS) cells cryopreservation protocol. This protocol involves the use of Rho-associated kinase (ROCK) inhibitor, Y-27632, for the feeder-free dissociated cells. The addition of ROCK inhibitor to both pre- and post-thaw culture media enhanced the cloning efficiency. The presence of Y-27632 in Matrigel further increased the cloning efficiency. As compared with other available protocols for human ES and iPS cells cryopreservation, our protocol differs in the technical simplicity, high cloning efficiency and post-thawing passaging. We believe that this protocol could be a generally applicable and robust platform for feeder-free cryopreservation and the expansion of present and future applications of human ES and iPS cells. The treatment with ROCK inhibitor, cell harvesting and the freezing-thawing process usually takes about 2 h excluding overnight incubation at -80 degrees C.


Asunto(s)
Criopreservación/métodos , Células Madre Embrionarias , Células Madre Pluripotentes Inducidas , Amidas , Técnicas de Cultivo de Célula , Proliferación Celular , Supervivencia Celular , Colágeno , Medios de Cultivo , Combinación de Medicamentos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/enzimología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Laminina , Inhibidores de Proteínas Quinasas , Proteoglicanos , Piridinas , Quinasas Asociadas a rho/antagonistas & inhibidores
14.
Hum Reprod ; 24(10): 2468-76, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19602515

RESUMEN

BACKGROUND: An essential prerequisite for the future widespread application of human induced pluripotent (hiPSCs) and embryonic stem cells (hESCs) is the development of efficient cryopreservation methods to facilitate their storage and transportation. METHODS: We developed a simple and effective freezing/thawing method of single dissociated hESCs and hiPSCs in a feeder-free culture in the presence of Rho-associated kinase (ROCK) inhibitor Y-27632. RESULTS: Exposure to ROCK inhibitor Y-27632 in freezing solution alone does not significantly enhance the post-thaw survival rate of single dissociated hESCs and hiPSCs. However, when ROCK inhibitor was added to both pre- and post-thaw culture media, there was an enhancement in the survival rate, which further increased when ROCK inhibitor was added to Matrigel as well. Under these treatments, hESCs and hiPSCs retained typical morphology, stable karyotype, expression of pluripotency markers and the potential to differentiate into derivatives of all three germ layers after long-term culture. CONCLUSIONS: This method is an effective cryopreservation procedure for single dissociated hESCs in feeder-free culture, which is also applicable for single dissociated hiPSCs using a ROCK inhibitor. The cloning efficiency of hiPSCs and hESCs improves when ROCK inhibitor is added both in Matrigel and in medium in comparison with conventional addition to medium. Therefore, we believe this method would be useful for current and future applications of the pluripotent stem cells.


Asunto(s)
Criopreservación/métodos , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Célula , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Colágeno , Crioprotectores , Medios de Cultivo , Combinación de Medicamentos , Células Madre Embrionarias/metabolismo , Marcadores Genéticos , Humanos , Laminina , Células Madre Pluripotentes/metabolismo , Proteoglicanos
15.
J Proteome Res ; 7(1): 412-23, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18047272

RESUMEN

Over the past few years, there has been a growing interest in discovering the molecular mechanisms controlling embryonic stem cells' (ESCs) proliferation and differentiation. Proteome analysis has proven to be an effective approach to comprehensively unravel the regulatory network of differentiation. We applied a two-dimensional electrophoresis based proteomic approach followed by mass spectrometry to analyze the proteome of two mouse ESC lines, Royan B1 and D3, at 0, 6, and 16 days after differentiation initiation. Out of 97 ESC-associated proteins commonly expressed in two ESC lines, 72 proteins were identified using MALDI TOF-TOF mass spectrometry analysis. The expression pattern of four down-regulated proteins including Hspd1, Hspa8, beta-Actin, and Tpt1 were further confirmed by Western blot and immunofluorescence analyses in Royan B1 and D3 as well as two other mouse ESC lines, Royan C1 and Royan C4. Differential mRNA expression analysis of 20 genes using quantitative real-time reverse transcription PCR revealed a low correlation between mRNA and protein levels during differentiation. We also observed that the mRNA level of Tpt1 increased significantly in differentiating cells, whereas its protein level decreased. Several novel ESC-associated proteins have been presented in this study which warrants further investigation with respect to the etiology of stemness.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/química , Células Madre Embrionarias/citología , Proteínas/análisis , Proteoma/análisis , Animales , Regulación hacia Abajo , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Espectrometría de Masas , Ratones , Proteínas/genética , Proteómica/métodos , ARN Mensajero/análisis , Proteína Tumoral Controlada Traslacionalmente 1 , Regulación hacia Arriba
16.
Cell Biol Int ; 32(2): 278-86, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18023369

RESUMEN

Parallel to the importance of the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function like primary islets. To increase the efficiency of endocrine pancreatic-like cell differentiation from mouse embryonic stem cells (ESCs), we applied activin-B to nestin-positive selection (protocol 1) and spontaneous differentiation (protocol 2) in different groups including: [A] activin-B, or [B] basic fibroblast growth factor (bFGF), and/or [C] activin-B+bFGF. The differentiated cells expressed most pancreatic-related genes. The number of insulin- and C peptide-positive cells, as well as dithizone-positive clusters in group A of protocol 1 was higher than in the other groups. Significant insulin concentrations in protocol 1 were produced when glucose was added to the medium, in comparison with protocol 2. Moreover, insulin release was increased significantly in group A of protocol 1 even with lower glucose. In conclusion, Addition of activin-B in a nestin-positive selection protocol increased the insulin-secreting cells in comparison with the same protocol with bFGF and/or spontaneous differentiation in presence of bFGF and/or activin-B alone. However, improvements of the current method are required to generate a sufficient source of true beta-cells for the treatment of diabetes mellitus.


Asunto(s)
Activinas/farmacología , Diferenciación Celular/fisiología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/fisiología , Insulina/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Células Madre Embrionarias/citología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Nestina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...