Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 31(20): 204001, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31986502

RESUMEN

In this paper, we describe the design and characterization of 400 nm long (88 periods) Al x Ga1-x N/AlN (0 ≤ x ≤ 0.1) quantum dot superlattices deposited on self-assembled GaN nanowires for application in electron-pumped ultraviolet sources. The optical performance of GaN/AlN superlattices on nanowires is compared with the emission of planar GaN/AlN superlattices with the same periodicity and thickness grown on bulk GaN substrates along the N-polar and metal-polar crystallographic axes. The nanowire samples are less sensitive to nonradiative recombination than planar layers, attaining internal quantum efficiencies (IQE) in excess of 60% at room temperature even under low injection conditions. The IQE remains stable for higher excitation power densities, up to 50 kW cm-2. We demonstrate that the nanowire superlattice is long enough to collect the electron-hole pairs generated by an electron beam with an acceleration voltage V A = 5 kV. At such V A, the light emitted from the nanowire ensemble does not show any sign of quenching under constant electron beam excitation (tested for an excitation power density around 8 kW cm-2 over the scale of minutes). Varying the dot/barrier thickness ratio and the Al content in the dots, the nanowire peak emission can be tuned in the range from 340 to 258 nm.

2.
Nanotechnology ; 30(50): 505603, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31530744

RESUMEN

The properties of group III-Nitrides (III-N) such as a large direct bandgap, high melting point, and high breakdown voltage make them very attractive for optoelectronic applications. However, conventional epitaxy on SiC and sapphire substrates results in strained and defective films with consequently poor device performance. In this work, by studying the nucleation of GaN on graphene/SiC by MOVPE, we unambiguously demonstrate the possibility of remote van der Waals epitaxy. By choosing the appropriate growth conditions, GaN crystals can grow either in-plane misoriented or fully epitaxial to the substrate. The adhesion forces across the GaN and graphene interface are very weak and the micron-scale nuclei can be easily moved around. The combined use of x-ray diffraction and transmission electron microscopy demonstrate the growth of stress-free and dislocation-free crystals. The high quality of the crystals was further confirmed by photoluminescence measurements. First principles calculations additionally highlighted the importance of the polarity of the underlying substrate. This work lays the first brick towards the synthesis of high quality III-N thin films grown via van der Waals epitaxy.

4.
Clin Microbiol Infect ; 19(2): E118-28, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23240764

RESUMEN

Several haemorrhagic fevers are caused by highly pathogenic viruses that must be handled in Biosafety level 4 (BSL-4) containment. These zoonotic infections have an important impact on public health and the development of a rapid and differential diagnosis in case of outbreak in risk areas represents a critical priority. We have demonstrated the potential of a DNA resequencing microarray (PathogenID v2.0) for this purpose. The microarray was first validated in vitro using supernatants of cells infected with prototype strains from five different families of BSL-4 viruses (e.g. families Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae and Paramyxoviridae). RNA was amplified based on isothermal amplification by Phi29 polymerase before hybridization. We were able to detect and characterize Nipah virus and Crimean-Congo haemorrhagic fever virus (CCHFV) in the brains of experimentally infected animals. CCHFV was finally used as a paradigm for epidemics because of recent outbreaks in Turkey, Kosovo and Iran. Viral variants present in human sera were characterized by BLASTN analysis. Sensitivity was estimated to be 10(5) -10(6) PFU/mL of hybridized cDNA. Detection specificity was limited to viral sequences having ~13-14% of global divergence with the tiled sequence, or stretches of ~20 identical nucleotides. These results highlight the benefits of using the PathogenID v2.0 resequencing microarray to characterize geographical variants in the follow-up of haemorrhagic fever epidemics; to manage patients and protect communities; and in cases of bioterrorism.


Asunto(s)
Fiebres Hemorrágicas Virales/diagnóstico , Fiebres Hemorrágicas Virales/virología , Técnicas de Diagnóstico Molecular/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Virología/métodos , Brotes de Enfermedades , Europa Oriental/epidemiología , Fiebres Hemorrágicas Virales/epidemiología , Humanos , Medio Oriente/epidemiología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA