Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 22, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646998

RESUMEN

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda; J.E. Smith (Lepidoptera: Noctuidae), is now an economically important pest that causes huge losses to maize productivity in sub-Saharan Africa. Variations in sub-population genetics and the processes of rapid adaptation underpinning the invasion remain unclear. For this, the genetic identity and diversity of FAW populations in Uganda were revealed by sequencing 87 samples (collected across the country). Based on the partial mitochondrial cytochrome oxidase I (COI) gene polymorphisms, we further examined the mitochondrial haplotype configuration and compared the FAW in Uganda with sequences from other parts of the world. The molecular target for organophosphate and carbamate resistance, acetylcholinesterase, was also investigated. RESULTS: Analysis of the partial COI gene sequences showed the presence of both rice (predominant) and corn strain haplotypes, with a haplotype diversity of 0.382. Based on the COI marker, pairwise difference distribution analyses, and neutrality tests, showed that the FAW populations in Uganda and the rest of Africa are evolving neutrally, but those in America and Asia are undergoing expansion. Our findings support observations that invasive FAW populations throughout the rest of Africa and Asia share a common origin. Sequencing of the S. frugiperda ace-1 gene revealed four amino acid substitutions, two of which (A201S and F290V) were previously shown to confer organophosphate resistance in both S. frugiperda and several other insect species. The other two previously reported new variations in positions g-396 and g-768, are presumed to be related to the development of insecticide resistance. CONCLUSIONS: This research has increased our knowledge of the genetics of FAW in Uganda, which is critical for pest surveillance and the detection of resistance. However, due to the low gene polymorphism of COI, more evolutionary studies incorporating the Spodoptera frugiperda whole-genome sequence are required to precisely understand the FAW population dynamics, introduction paths, origin, and subsequent spread.


Asunto(s)
Acetilcolinesterasa , Insecticidas , Animales , Spodoptera/genética , Acetilcolinesterasa/genética , Mutación Puntual , Organofosfatos/farmacología , Uganda , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Zea mays/genética , Larva
2.
Plant Dis ; 104(3): 853-859, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31910114

RESUMEN

Begomoviruses are plant viruses that cause major losses to many economically important crops. Although they are poorly understood, begomoviruses infecting wild plants may have an important role as reservoirs in the epidemiology of viral diseases. This study reports the discovery and genomic characterization of three novel bipartite begomoviruses from wild and cultivated African basil (Ocimum gratissimum) plants collected in Uganda, East Africa. Based on the symptoms shown by the infected plants, the names proposed for these viruses are Ocimum yellow vein virus (OcYVV), Ocimum mosaic virus (OcMV), and Ocimum golden mosaic virus (OcGMV). Genome and phylogenetic analyses suggest that DNA-A of OcGMV is mostly related to begomoviruses infecting tomato in Africa, whereas those of OcYVV and OcMV are closely related to one another and highly divergent within the Old World begomoviruses. The DNA-A of all characterized begomovirus isolates are of a recombinant nature, revealing the role of recombination in the evolution of these begomoviruses. The viruses characterized here are the first identified in O. gratissimum and the first in Ocimum spp. in the African continent and could have important epidemiological consequences for cultivated basils and other important crops.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Begomovirus , Ocimum basilicum , Ocimum , ADN Viral , Filogenia , Enfermedades de las Plantas , Uganda
3.
Arch Virol ; 162(6): 1799-1803, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28243802

RESUMEN

A novel bipartite legumovirus (genus Begomovirus, family Geminiviridae), that naturally infects the wild leguminous plant Desmodium sp. in Uganda, was molecularly characterized and named Desmodium mottle virus. The highest nucleotide identities for DNA-A, obtained from two field-collected samples, were 79.9% and 80.1% with the legumovirus, soybean mild mottle virus. DNA-B had the highest nucleotide identities (65.4% and 66.4%) with a typical non-legumovirus Old World begomovirus, African cassava mosaic virus. This is the first report of a legumovirus in East Africa and extends the known diversity of begomoviruses found infecting wild plants in this continent.


Asunto(s)
Begomovirus/aislamiento & purificación , Fabaceae/virología , Genoma Viral , Enfermedades de las Plantas/virología , Secuencia de Bases , Begomovirus/clasificación , Begomovirus/genética , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Uganda
4.
Arch Virol ; 162(4): 1079-1082, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27900540

RESUMEN

The complete genomes of a monopartite begomovirus (genus Begomovirus, family Geminiviridae) and an associated betasatellite found infecting Vernonia amygdalina Delile (family Compositae) in Uganda were cloned and sequenced. Begomoviruses isolated from two samples showed the highest nucleotide sequence identity (73.1% and 73.2%) to an isolate of the monopartite begomovirus tomato leaf curl Vietnam virus, and betasatellites from the same samples exhibited the highest nucleotide sequence identity (67.1% and 68.2%) to vernonia yellow vein Fujian betasatellite. Following the current taxonomic criteria for begomovirus species demarcation, the isolates sequenced here represent a novel begomovirus species. Based on symptoms observed in the field, we propose the name vernonia crinkle virus (VeCrV) for this novel begomovirus and vernonia crinkle betasatellite (VeCrB) for the associated betasatellite. This is the first report of a monopartite begomovirus-betasatellite complex from Uganda.


Asunto(s)
Begomovirus/aislamiento & purificación , Enfermedades de las Plantas/virología , Virus Satélites/aislamiento & purificación , Vernonia/virología , Begomovirus/clasificación , Begomovirus/genética , ADN Viral/genética , Genoma Viral , Filogenia , Virus Satélites/clasificación , Virus Satélites/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...