Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nat Prod ; 85(9): 2135-2141, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36075014

RESUMEN

The leaf extract of Suregada zanzibariensis gave two new modified ent-abietane diterpenoids, zanzibariolides A (1) and B (2), and two known triterpenoids, simiarenol (3) and ß-amyrin (4). The structures of the isolated compounds were elucidated based on NMR and MS data analysis. Single-crystal X-ray diffraction was used to establish the absolute configurations of compounds 1 and 2. The crude leaf extract inhibited the infectivity of herpes simplex virus 2 (HSV-2, IC50 11.5 µg/mL) and showed toxicity on African green monkey kidney (GMK AH1) cells at CC50 52 µg/mL. The isolated compounds 1-3 showed no anti-HSV-2 activity and exhibited insignificant toxicity against GMK AH1 cells at ≥100 µM.


Asunto(s)
Abietanos , Antivirales , Suregada , Triterpenos , Abietanos/química , Abietanos/aislamiento & purificación , Abietanos/farmacología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/farmacología , Chlorocebus aethiops , Herpesvirus Humano 2/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/química , Suregada/química , Triterpenos/química , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
2.
J Ethnopharmacol ; 292: 115204, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35304278

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Except for few highly pathogenic viruses, no antiviral drug has been approved for treatment of viral infections in humans. Plant extracts, selected based on their ethno-medical use, represent an important source of compounds for the development of novel candidate antiviral drugs. This especially concerns plants with ethnomedical records on their use in treatment of viral infections. AIM OF THE STUDY: To identify and document medicinal plants used by traditional health practitioners (THPs) for treatment of respiratory infections and muco-cutaneous lesions in order to study their antiviral activity including identification of active components and elucidation of mode of antiviral activity. MATERIALS AND METHODS: The ethno-medical survey was performed in the Kagera region of Tanzania. The THPs were asked for plants used for treatment of signs and symptoms of respiratory infections and watery muco-cutaneous blisters in oral and genital regions. The plants identified were successively extracted with n-hexane, ethyl acetate and water, and the extracts assayed for anti-respiratory syncytial virus (RSV), anti-herpes simplex virus 2 (HSV-2), and anti-human parainfluenza virus 2 (HPIV-2) activity in cultured cells. Antiviral components were separated by ethanol precipitation and CL-6B chromatography, and the mode of antiviral activity elucidated by the time-of-addition assay and selection for the virus variants resistant to antiviral plant extract. RESULTS: THPs identified fifteen plants used for treatment of respiratory infections and muco-cutaneous blisters. The water extract, but not n-hexane or ethyl acetate extracts, of six of these plants including Erythrina abyssinica stem bark, inhibited infectivity of two glycosaminoglycan-binding viruses i.e., RSV and HSV-2 but not the sialic acid binding HPIV-2. An activity-guided separation revealed that antiviral component(s) of water extract of E. abyssinica could be precipitated with ethanol. This sample potently and selectively inhibited RSV and HSV-2 infectivity in cultured cells with IC50 values of 2.1 µg/ml (selectivity index >476) and 0.14 µg/ml (selectivity index >7143) respectively. The sample exhibited inhibitory effect on the virus attachment to and entry into the cells by directly targeting the viral particles. Indeed, 10 consecutive virus passages in HEp-2 cells in the presence of this extract selected for a resistant RSV variant lacking the attachment, viral membrane-associated, G protein due to a stop codon at amino acid residue 33 (Leu33stop). Fractionation of the E. abyssinica extract on a CL-6B column revealed that anti-RSV and HSV-2 activity correlated with carbohydrate content. The most pronounced antiviral activity was associated with a carbohydrate containing ingredient of molecular mass of <5 kDa, which may polymerize to antiviral composites of up to 410 kDa. CONCLUSIONS: Altogether, the water extract of six medicinal plants showed anti-RSV and anti-HSV-2 activities. Extended studies of the stem bark of E. abyssinica identified antiviral components that potently and selectively inhibited infectivity of free RSV and HSV-2 particles, a feature of importance in topical treatment of these infections. This observation confirms ethno-medical information concerning the use of E. abyssinica extract for treatment of respiratory infections and herpetic lesions.


Asunto(s)
Erythrina , Plantas Medicinales , Infecciones del Sistema Respiratorio , Antivirales/uso terapéutico , Vesícula/tratamiento farmacológico , Carbohidratos/farmacología , Etanol/farmacología , Herpesvirus Humano 2 , Humanos , Corteza de la Planta , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Virus Sincitiales Respiratorios , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Tanzanía , Agua/farmacología
3.
East Afr Health Res J ; 2(1): 18-25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-34308170

RESUMEN

BACKGROUND: DNA analysis has potential for screening for and diagnosing a variety of conditions as well as the characterization of various pathogens for many purposes including to identify genetic disorders and mutations, study genetic diversity, and establish evolutional trends. METHODS: Our study compared the performance of 2 DNA extraction kits: Qiagen and prepIT•MAX. The study tested 160 formalin-fixed paraffin-embedded (FFPE) human tissue samples that had been collected at Muhimbili National Hospital (MNH) between 2010 and 2016. For each sample, DNA extraction was performed using both the Qiagen and prepIT•MAX kits followed by polymerase chain reaction (PCR) tests to target the RNA polymerase gene and gel electrophoresis. RESULTS: The findings showed that the Qiagen was 3 times superior to the prepIT•MAX kit in successfully extracting mycobacterial DNA from presumptive tuberculosis (TB) FFPE tissues. Of the 160 previously Ziehl-Neelsen stain-negative Mycobacterium tuberculosis suspicious tissue samples, 12 (7.5%) tested positive with the PCR. Of the 12 PCR-detected positive samples, 8 (66.7%) yielded positive results with the Qiagen kit only and 4 (33.3%) yielded positive results with both Qiagen and prepIT•MAX kits. Additionally, 10 (83.3%) came from well-formed granuloma, 1 (8%) from caseous necrosis, and 1 (8.3%) Langhans-type giant cells endorsing their potential for housing infection such as TB adenitis. CONCLUSIONS: A combination of molecular techniques, microscopy, and pathological features increases detection of M. tuberculosis from FFPE tissues. Both the Qiagen and the prepIT•MAX DNA extraction kits have shown a remarkable capability for extracting DNA from M. tuberculosis, although examination of FFPE tissues is not an intended use for the prepIT MAX, according to the manufacturer. In resource-limited countries, however, these kits may complement each other. We recommend further studies for validation and optimization, which includes the cost effectiveness of prepIT•MAX extraction kit to advocate for its use in extraction of mycobacterial DNA from FFPE tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...