Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Foodborne Pathog Dis ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563789

RESUMEN

The global food trade provides a means of disseminating antimicrobial resistant (AMR) bacteria and genes. Using selective media, carbapenem-resistant species of Enterobacterales (Providencia sp. and Citrobacter sp.), were detected in a single package of imported frozen shrimp purchased from a grocery store in Ohio, USA. Polymerase chain reaction confirmed that both isolates harbored blaNDM-1 genes. Following PacBio long read sequencing, the sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline. The blaNDM-1 genes were found in IncC plasmids, each with different antimicrobial resistance island configuration. We found that the blaNDM-1 AMR islands had close relationships with previously reported environmental, food, and clinical isolates detected in Asia and the United States, highlighting the importance of the food chain in the global dissemination of antimicrobial resistance.

2.
Am J Vet Res ; 85(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467112

RESUMEN

Since their commercialization, scientists have known that antimicrobial use kills or inhibits susceptible bacteria while allowing resistant bacteria to survive and expand. Today there is widespread antimicrobial resistance (AMR), even to antimicrobials of last resort such as the carbapenems, which are reserved for use in life-threatening infections. It is often convenient to assign responsibility for this global health crisis to the users and prescribers of antimicrobials. However, we know that animals never treated with antimicrobials carry clinically relevant AMR bacteria and genes. The causal pathway from bacterial susceptibility to resistance is not simple, and dissemination is cyclical rather than linear. Amplification of AMR occurs in healthcare environments and on farms where frequent exposure to antimicrobials selects for resistant bacterial populations. The recipients of antimicrobial therapy release antimicrobial residues, resistant bacteria, and resistance genes in waste products. These are reduced but not removed during wastewater and manure treatment and enter surface waters, soils, recreational parks, wildlife, and fields where animals graze and crops are grown for human and animal consumption. The cycle is complete when a patient carrying AMR bacteria is treated with antimicrobials that amplify the resistant bacterial populations. Reducing the development and spread of AMR requires a One Health approach with the combined commitment of governments, medical and veterinary professionals, agricultural industries, food and feed processors, and environmental scientists. In this review and in the companion Currents in One Health by Ballash et al, JAVMA, April 2024, we highlight just a few of the steps of the complex cyclical causal pathway that leads to the amplification, dissemination, and maintenance of AMR.


Asunto(s)
Antiinfecciosos , Salud Única , Humanos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Animales Salvajes , Bacterias
3.
J Am Vet Med Assoc ; 262(4): 451-458, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428137

RESUMEN

Once considered to be a simple cause-and-effect relationship with localized impact, the concept of how antimicrobial use drives antimicrobial resistance is now recognized as a complex, transdisciplinary problem on a global scale. While the issue of antimicrobial resistance is often studied and addressed at the antimicrobial-human or antimicrobial-animal treatment interface, the role of the environment in the One Health dynamics of antimicrobial resistance is not as well understood. Antimicrobial-resistant bacteria, including those resistant to carbapenem drugs, are emerging in veterinary clinical environments, on farms, and in natural habitats. These multidrug-resistant bacteria can colonize our livestock and companion animals and are later disseminated into the environment, where they contaminate surface waters and colonize wildlife. From here, the One Health transmission cycle of antimicrobial-resistant bacteria is completed as environmental reservoirs can serve as sources of antimicrobial resistance transmission into human or animal healthcare settings. In this review, we utilize a One Health perspective to evaluate how environments become contaminated and, in turn, become reservoirs that can colonize and infect our veterinary species, and how the veterinary field is combating environmental contamination with antimicrobial stewardship regulations and program implementation. The companion Currents in One Health by Parker et al, AJVR, April 2024, addresses the intensive research that justifies this One Health cycle of antimicrobial resistance transmission and emerging techniques that are dissecting the complex interactions at the One Health interface.


Asunto(s)
Antibacterianos , Salud Única , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Animales Salvajes/microbiología , Farmacorresistencia Bacteriana Múltiple
4.
Microbiol Spectr ; 11(4): e0524222, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37338386

RESUMEN

Antibiotic therapy is the standard of care for urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC). However, previous antibiotic therapy may impart a selective pressure that influences the population structure and pathogenic potential of infecting UPEC strains. Here, we conducted a 3-year study using whole-genome-sequencing analysis and retrospective medical record review to characterize how antibiotic exposure influenced the phenotypic antibiotic resistance, acquired resistome, virulome, and population structure of 88 UTI-causing E. coli strains from dogs. A majority of UTI-associated E. coli strains were from phylogroup B2 and clustered within sequence type 372. Previous antibiotic exposure was associated with a population shift toward UPEC from phylogroups other than the typical urovirulent phylogroup B2. The specific virulence profiles within the accessory virulome that were associated with antibiotic use were elicited by the effect of antibiotics on UPEC phylogenetic structure. Among phylogroup B2, antibiotic exposure increased the quantity of genes within the resistome and the odds of developing reduced susceptibility to at least one antibiotic. Non-B2 UPEC strains harbored a more diverse and greater resistome that conferred reduced susceptibility to multiple antibiotic classes following antibiotic exposure. Collectively, these data suggest that previous antibiotic exposure establishes an environment that provides a selective edge to non-B2 UPEC strains through their diverse and abundant antibiotic resistance genes, despite their lack of urovirulence genes. Our findings highlight the necessity for judicious use of antibiotics as we uncover another mechanism by which antibiotic exposure and resistance can influence the dynamics of bacterial infectious disease. IMPORTANCE Urinary tract infections (UTIs) are one of the most common infections of dogs and humans. While antibiotic therapy is the standard of care for UTIs and other infections, antibiotic exposure may influence the pathogenic profile of subsequent infections. We used whole-genome sequencing and retrospective medical record review to characterize the effect of systemic antibiotic therapy on the resistance, virulence, and population structure of 88 UTI-causing UPEC strains isolated from dogs. Our results indicate that antibiotic exposure alters the population structure of infecting UPEC strains, providing a selective edge for non-B2 phylogroups that harbor diverse and abundant resistance gene catalogues but fewer urovirulence genes. These findings highlight how antibiotic resistance can influence pathogen infection dynamics and have clinical implications for the judicious use of antibiotics for bacterial infections.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Animales , Perros , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/epidemiología , Filogenia , Estudios Retrospectivos , Factores de Virulencia/genética , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/veterinaria , Farmacorresistencia Bacteriana Múltiple/genética
5.
Antibiotics (Basel) ; 12(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37237747

RESUMEN

Concern about zoonoses and wildlife has increased. Few studies described the role of wild mammals and environments in the epidemiology of Salmonella. Antimicrobial resistance is a growing problem associated with Salmonella that threatens global health, food security, the economy, and development in the 21st century. The aim of this study is to estimate the prevalence and identify antibiotic susceptibility profiles and serotypes of non-typhoidal Salmonella enterica recovered from non-human primate feces, feed offered, and surfaces in wildlife centers in Costa Rica. A total of 180 fecal samples, 133 environmental, and 43 feed samples from 10 wildlife centers were evaluated. We recovered Salmonella from 13.9% of feces samples, 11.3% of environmental, and 2.3% of feed samples. Non-susceptibility profiles included six isolates from feces (14.6%): four non-susceptible isolates (9.8%) to ciprofloxacin, one (2.4%) to nitrofurantoin, and one to both ciprofloxacin and nitrofurantoin (2.4%). Regarding the environmental samples, one profile was non-susceptible to ciprofloxacin (2.4%) and two to nitrofurantoin (4.8%). The serotypes identified included Typhimurium/I4,[5],12:i:-, S. Braenderup/Ohio, S. Newport, S. Anatum/Saintpaul, and S. Westhampton. The epidemiological surveillance of Salmonella and antimicrobial resistance can serve in the creation of strategies for the prevention of the disease and its dissemination throughout the One Health approach.

6.
Appl Environ Microbiol ; 89(5): e0025723, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067417

RESUMEN

Environmental surfaces can serve as reservoirs for pathogens and antimicrobial-resistant (AMR) bacteria in healthcare settings. Although active surveillance programs are used in veterinary and human healthcare, unconventional settings like zoological facilities are often overlooked, even though antimicrobials are used to maintain the health of their animal collections. Here, we used electrostatic cloths to conduct active environmental surveillance over a 2-year period at two zoological institutions to determine contamination prevalence of human-only and mixed animal-human touch environments with AMR bacteria. We recovered Enterobacterales isolates that expressed quinolone resistance, an AmpC-like phenotype, and an extended-spectrum ß-lactamase phenotype from 144 (39%), 141 (38.2%), and 72 (19.5%) of the environmental samples, respectively. The zoological institutions, areas and exhibits within the zoological facility, and sampling surface type affected the odds of recovering AMR bacteria from the environment. Three carbapenemase-producing Enterobacter cloacae complex ST171 isolates recovered from one zoological facility harbored an IncH12 plasmid with a Tn4401b-KPC-4 transposon conferring multidrug resistance. One isolate maintained three tandem repeats of a Tn4401b-KPC-4 element on an IncHI2 plasmid, although this isolate was susceptible to the four carbapenem drugs tested. These three isolates and their IncH12 plasmids shared significant genomic similarity with two E. cloacae complex isolates recovered from canine patients at a regional veterinary hospital during year 2 of this study. Our results indicated that surface environments at zoological institutions can serve as reservoirs for AMR bacteria and their genes and have implications for animal and public health. IMPORTANCE Environmental surfaces can be a source of antimicrobial-resistant (AMR) bacteria that pose a risk to human and animal health. Zoological institutions are unique environments where exotic animals, staff, and visitors intermingle and antimicrobials are used to maintain animal health. However, zoological environments are often overlooked as reservoirs of AMR bacteria. Here, we show that zoological environments can serve as reservoirs of fluoroquinolone-resistant and extended-spectrum cephalosporin-resistant bacteria. In addition, we isolated three carbapenemase-producing Enterobacter cloacae complex strains carrying blaKPC-4, including one with a unique, tandem triplicate of the Tn4401b-KPC-4 element. Comparative whole genomics of these isolates with two E. cloacae complex isolates from patients at a regional veterinary hospital highlighted the possibility of local KPC-4 spread between animal environments. Our results suggest that environments at zoological institutions serve as reservoirs for AMR bacteria and pose a hypothetical One Health risk to the public, staff, and the wild animal populations in captivity.


Asunto(s)
Enterobacter cloacae , Infecciones por Enterobacteriaceae , Humanos , Animales , Perros , Enterobacter cloacae/genética , Antibacterianos/farmacología , Infecciones por Enterobacteriaceae/microbiología , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
7.
PLoS One ; 18(2): e0281909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36812188

RESUMEN

As safe agents of last resort, carbapenems are reserved for the treatment of infections caused by multidrug-resistant organisms. The impact of ß-lactam antibiotics, cefotaxime, and meropenem on the frequency and diversity of carbapenemase-producing organisms recovered from environmental samples has not been fully established. Therefore, this methodological study aimed at determining ß-lactam drugs used in selective enrichment and their impact on the recovery of carbapenemase-producing Enterobacterales (CPE) from untreated wastewater. We used a longitudinal study design where 1L wastewater samples were collected weekly from wastewater treatment plant (WWTP) influent and quarterly from contributing sanitary sewers in Columbus, Ohio USA with 52 total samples collected. Aliquots of 500 mL were passed through membrane filters of decreasing pore sizes to enable all the water to pass through and capture bacteria. For each sample, the resulting filters were placed into two modified MacConkey (MAC) broths, one supplemented with 0.5 µg/mL of meropenem and 70 µg/mL of ZnSO4 and the other supplemented with 2 µg/mL cefotaxime. The inoculated broth was then incubated at 37° C overnight, after which they were streaked onto two types of correspondingly-modified MAC agar plates supplemented with 0.5 µg/mL and 1.0 µg/mL of meropenem and 70 µg/mL of ZnSO4 and incubated at 37°C overnight. The isolates were identified based on morphological and biochemical characteristics. Then, up to four distinct colonies of each isolate's pure culture per sample were tested for carbapenemase production using the Carba-NP test. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) MALDI-TOF MS was used to identify carbapenemase-producing organisms. In total 391 Carba-NP positive isolates were recovered from the 52 wastewater samples: 305 (78%) isolates had blaKPC, 73 (19%) carried blaNDM, and 14 (4%) harbored both blaKPC and blaNDM resistance genes. CPE genes of both blaKPC and blaNDM were recovered in both types of modified MAC broths, with 84 (21%) having a blaKPC gene, 22 (6%) carrying blaNDM and 9 (2%) harbored both a blaKPC and blaNDM of isolates recovered from MAC medium incorporated with 0.5ug/mL meropenem and 70ug/mL ZnSO4. The most prevalent isolates were Klebsiella pneumoniae, Escherichia coli, and Citrobacter spp.


Asunto(s)
Cefotaxima , Aguas Residuales , Meropenem , Estudios Longitudinales , Ohio , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos
8.
PLoS One ; 17(9): e0272806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36054112

RESUMEN

Surface waters, especially those receiving wastewater flows, can disseminate antimicrobial resistant bacteria (ARB), antimicrobial resistance genes (ARG), and antibiotics. In the Scioto River of central Ohio, United States, we evaluated fishes as potential sentinels of ARB and antimicrobial contamination and investigated the influence of antimicrobial exposure on the fish intestinal resistome. Seventy-seven fish were collected from river reaches receiving inputs from two wastewater treatment plants that serve the greater Columbus Metropolitan Area. Fish were screened for the presence of cephalosporin-resistant (CeRO) and carbapenem-resistant (CRO) organisms, epidemic carbapenemase genes, and antibiotic drugs and metabolites using culture methods, droplet digital PCR, and ultra-high performance liquid chromatography tandem mass spectroscopy (UHPLC-MS/MS). Nearly 21% of fish harbored a CeRO in their resistome, with 19.4% exhibiting bacteria expressing an AmpC genotype encoded by blaCMY, and 7.7% with bacteria expressing an extended-spectrum ß-lactamase phenotype encoded by blaCTX-M. blaKPC and blaNDM were present in 87.7% (57/65) and 80.4% (37/46) of the intestinal samples at an average abundance of 104 copies. Three antibiotics-lincomycin (19.5%), azithromycin (31.2%) and sulfamethoxazole (3.9%)-were found in hepatic samples at average concentrations between 25-31 ng/g. Fish harboring blaCTX-M and those exposed to azithromycin were at greater odds of being downstream of a wastewater treatment plant. Fish that bioconcentrated antibiotics in their liver were not at greater odds of harboring CeRO, CRO, or epidemic carbapenemase gene copies in their resistome. Our findings confirm that fishes can be effective bioindicators of surface waters contaminated with ARB, ARG, and antibiotics. Moreover, our findings highlight the varying importance of different mechanisms that facilitate establishment of ARB in aquatic ecosystems.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Azitromicina/farmacología , Bacterias/genética , Proteínas Bacterianas , Cefalosporinas/farmacología , Ecosistema , Peces/genética , Espectrometría de Masas en Tándem , Aguas Residuales/microbiología , Agua/farmacología , beta-Lactamasas/genética , beta-Lactamasas/farmacología
9.
PLoS One ; 17(8): e0270461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36006972

RESUMEN

Biofilm formation enhances bacteria's ability to colonize unique niches while protecting themselves from environmental stressors. Escherichia coli that colonize the urinary tract can protect themselves from the harsh bladder environment by forming biofilms. These biofilms promote persistence that can lead to chronic and recurrent urinary tract infections (UTI). While biofilm formation is frequently studied among urinary E. coli, its association with other pathogenic mechanisms and adaptations in certain host populations remains poorly understood. Here we utilized whole genome sequencing and retrospective medical record analysis to investigate associations between the population structure, phenotypic resistance, resistome, virulome, and patient demographic and clinical findings of 104 unique urinary E. coli and their capacity to form biofilms. We show that population structure including multilocus sequence typing and Clermont phylogrouping had no association with biofilm capacity. Among clinical factors, exposure to multiple antibiotics within that past 30 days and a clinical history of recurrent UTIs were positively associated with biofilm formation. In contrast, phenotypic antimicrobial reduced susceptibility and corresponding acquired resistance genes were negatively associated with biofilm formation. While biofilm formation was associated with increased virulence genes within the cumulative virulome, individual virulence genes did not influence biofilm capacity. We identified unique virulotypes among different strata of biofilm formation and associated the presence of the tosA/R-ibeA gene combination with moderate to strong biofilm formation. Our findings suggest that E. coli causing UTI in dogs utilize a heterogenous mixture of virulence genes to reach a biofilm phenotype, some of which may promote robust biofilm capacity. Antimicrobial use may select for two populations, non-biofilm formers that maintain an arsenal of antimicrobial resistance genes to nullify treatment and a second that forms durable biofilms to avoid therapeutic insults.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Perros , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Estudios Retrospectivos , Infecciones Urinarias/tratamiento farmacológico
10.
Appl Environ Microbiol ; 88(13): e0046522, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35736227

RESUMEN

Wildlife play a role in the acquisition, maintenance, and dissemination of antimicrobial resistance (AMR). This is especially true at the human-domestic animal-wildlife interface, like urbanized areas, where interactions occur that can promote the cross-over of AMR bacteria and genes. We conducted a 2-year fecal surveillance (n = 783) of a white-tailed deer (WTD) herd from an urban park system in Ohio to identify and characterize cephalosporin-resistant and carbapenemase-producing bacteria using selective enrichment. Using generalized linear mixed models we found that older (OR = 2.3, P < 0.001), male (OR = 1.8, P = 0.001) deer from urbanized habitats (OR = 1.4, P = 0.001) were more likely to harbor extended-spectrum cephalosporin-resistant Enterobacterales. In addition, we isolated two carbapenemase-producing Enterobacterales (CPE), a Klebsiella quasipneumoniae harboring blaKPC-2 and an Escherichia coli harboring blaNDM-5, from two deer from urban habitats. The genetic landscape of the plasmid carrying blaKPC-2 was unique, not clustering with other reported plasmids encoding KPC-2, and only sharing 78% of its sequence with its nearest match. While the plasmid carrying blaNDM-5 shared sequence similarity with other reported plasmids encoding NDM-5, the intact IS26 mobile genetic elements surrounding multiple drug resistant regions, including the blaNDM-5, has been reported infrequently. Both carbapenemase genes were successfully conjugated to a J53 recipient conferring a carbapenem-resistant phenotype. Our findings highlight that urban environments play a significant role on the transmission of AMR bacteria and genes to wildlife and suggest WTD may play a role in the dissemination of clinically and epidemiologically relevant antimicrobial resistant bacteria. IMPORTANCE The role of wildlife in the spread of antimicrobial resistance is not fully characterized. Some wildlife, including white-tailed deer (WTD), can thrive in suburban and urban environments. This may result in the exchange of antimicrobial resistant bacteria and resistance genes between humans and wildlife, and lead to their spread in the environment. We found that WTD living in an urban park system carried antimicrobial resistant bacteria that were important to human health and resistant to antibiotics used to treat serious bacterial infections. This included two deer that carried bacteria resistant to carbapenem antibiotics which are critically important for treatment of life-threatening infections. These two bacteria had the ability to transfer their AMR resistance genes to other bacteria, making them a threat to public health. Our results suggest that WTD may contribute to the spread of antimicrobial resistant bacteria in the environment.


Asunto(s)
Cefalosporinasa , Ciervos , Farmacorresistencia Bacteriana , Gammaproteobacteria/aislamiento & purificación , Animales , Animales Salvajes/microbiología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Cefalosporinasa/genética , Cefalosporinas/farmacología , Ciervos/microbiología , Gammaproteobacteria/efectos de los fármacos , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Plásmidos
11.
Ecohealth ; 18(3): 288-296, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34609648

RESUMEN

The changing epidemiologic role of wildlife as reservoirs of antimicrobial-resistant bacteria (ARB) is poorly understood. In this study, we characterize the phenotypic resistance of commensal Escherichia coli from fecal samples of 879 individual white-tailed (Odocoileus virginianus; WTD) over a ten-year period and analyze resistance patterns. Our results show commensal E. coli from WTD had significant linear increases in reduced susceptibility to 5 of 12 antimicrobials, including broad-spectrum cephalosporins and fluoroquinolones, from 2006 to 2016. In addition, the relative frequency distribution of minimal inhibitory concentrations of two additional antimicrobials shifted towards higher values from across the study period. The prevalence of multidrug-resistant commensal E. coli increased over the study period with a prevalence of 0%, 2.2%, and 3.7% in 2006, 2012, and 2016, respectively. WTD may be persistently and increasingly exposed to antibiotics or their residues, ARB, and/or antimicrobial resistance genes via contaminated environments like surface water receiving treated wastewater effluent.


Asunto(s)
Antiinfecciosos , Ciervos , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Ciervos/microbiología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Heces/microbiología
12.
Sci Rep ; 11(1): 14041, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234222

RESUMEN

Retail beef and pork, including processed products, can serve as vehicles for the zoonotic foodborne transmission of pathogens and antimicrobial resistant bacteria. However, processed and seasoned products like sausages, are not often included in research and surveillance programs. The objective of this study was to investigate retail ground beef and pork, including processed products, for the presence of common foodborne pathogens and antimicrobial resistant bacteria. We purchased 763 packages of fresh and fully cooked retail meat products during 29 visits to 17 grocery stores representing seven major grocery chains located in west and central Ohio. Each package of meat was evaluated for contamination with methicillin-resistant Staphylococcus aureus (MRSA), Salmonella spp., Enterobacteriaceae expressing extended-spectrum cephalosporin resistance, and carbapenemase-producing organisms (CPO). Only 3 of the 144 (2.1%) packages of fully cooked meat products contained any of these organisms, 1 with an extended-spectrum ß-lactamase-producing (ESBL) Enterobacteriaceae and 2 with CPO. Among the 619 fresh meat products, we found that 85 (13.7%) packages were contaminated with MRSA, 19 (3.1%) with Salmonella, 136 (22.0%) with Enterobacteriaceae expressing an AmpC (blaCMY) resistance genotype, 25 (4.0%) with Enterobacteriaceae expressing an ESBL (blaCTX-M) resistance genotype, and 31 (5.0%) with CPO, primarily environmental organisms expressing intrinsic carbapenem resistance. However, one CPO, a Raoultella ornithinolytica, isolated from pork sausage co-harbored both blaKPC-2 and blaNDM-5 on IncN and IncX3 plasmids, respectively. Our findings suggest that fresh retail meat, including processed products can be important vehicles for the transmission of foodborne pathogens and antimicrobial resistant bacteria, including those with epidemic carbapenemase-producing genotypes.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/genética , Farmacorresistencia Bacteriana , Microbiología de Alimentos , Productos de la Carne/microbiología , beta-Lactamasas/genética , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Enterobacteriaceae/clasificación , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Contaminación de Alimentos/estadística & datos numéricos , Genotipo , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Plásmidos/genética , Prevalencia
13.
J Am Vet Med Assoc ; 258(7): 758-766, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33754819

RESUMEN

OBJECTIVE: To estimate the prevalence of extended-spectrum cephalosporin-, carbapenem-, and fluoroquinolone-resistant bacteria of the family Enterobacteriaceae in the feces of hospitalized horses and on hospital surfaces. SAMPLE: Fecal and environmental samples were collected from The Ohio State University Galbreath Equine Center (OSUGEC) and a private referral equine hospital in Kentucky (KYEH). Feces were sampled within 24 hours after hospital admission and after 48 hours and 3 to 7 days of hospitalization. PROCEDURES: Fecal and environmental samples were enriched, and then selective media were inoculated to support growth of Enterobacteriaceae bacteria that expressed resistance phenotypes to extended-spectrum cephalosporins, carbapenems, and fluoroquinolones. RESULTS: 358 fecal samples were obtained from 143 horses. More samples yielded growth of Enterobacteriaceae bacteria that expressed resistance phenotypes (AmpC ß-lactamase, OR = 4.2; extended-spectrum beta-lactamase, OR = 3.2; and fluoroquinolone resistance, OR = 4.0) after 48 hours of hospitalization, versus within 24 hours of hospital admission. Horses hospitalized at KYEH were at greater odds of having fluoroquinolone-resistant bacteria (OR = 2.2). At OSUGEC, 82%, 64%, 0%, and 55% of 164 surfaces had Enterobacteriaceae bacteria with AmpC ß-lactamase phenotype, extended-spectrum beta-lactamase phenotype, resistance to carbapenem, and resistance to fluoroquinolones, respectively; prevalences at KYEH were similarly distributed (52%, 32%, 1%, and 35% of 315 surfaces). CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that antimicrobial-resistant Enterobacteriaceae may be isolated from the feces of hospitalized horses and from the hospital environment. Hospitalization may lead to increased fecal carriage of clinically important antimicrobial-resistance genes.


Asunto(s)
Carbapenémicos , Fluoroquinolonas , Animales , Antibacterianos/farmacología , Cefalosporinas , Enterobacteriaceae , Heces , Fluoroquinolonas/farmacología , Caballos , Hospitales , Ohio , Prevalencia
14.
Foodborne Pathog Dis ; 18(3): 219-227, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471597

RESUMEN

One objective of this study was to determine overall prevalence of Salmonella in ground pork from U.S. retail stores over three seasons including both case-ready and store-ground packages. Package types collected included: overwrap, chub, modified atmosphere packaging, and other (plastic or wax paper wrapped). Because package type represents different production systems and are subject to varied microbiological government regulation and testing methodologies, both USDA-FSIS and FDA Salmonella isolation protocols were performed. Another objective of the study was to determine serotypes and antimicrobial susceptibility profiles of the isolates obtained from the ground pork samples. Ground pork aliquots were subjected to real-time PCR. Recovered isolates were serotyped and minimum inhibitory concentration analysis to 15 antimicrobials was determined using microbroth dilution. Overall prevalence of Salmonella in ground pork from the 865 samples collected was 1.39%. Prevalence was not affected by package type (p = 0.29) nor grind location (case-ready vs. store-ground; p = 0.17). Season affected Salmonella prevalence (p = 0.05) with most isolates found during fall, and there was a tendency for geographic region to affect prevalence (p = 0.07). The USDA Salmonella isolation method was more effective at recovering isolates (p = 0.01) compared with the FDA methodology and yielded a kappa statistic of 0.26 as a measure of agreement. The serotypes isolated included: Infantis, 4,5,12:i:-, Brandenburg, Typhimurium var 5-, Seftenberg, and Johannesburg with only two packages containing multiple serotypes. No isolates were resistant to antibiotics commonly used to treat human Salmonella infections including extended spectrum cephalosporins or fluoroquinolones. Although the recovery of Salmonella from retail ground pork samples was rare, Salmonella Typhimurium (and its monophasic variant 4,5,12:i:-), which are among the most common serovars recovered from human infections, were recovered. Therefore, more effective strategies to further reduce or eliminate these pathogens from retail pork products are warranted.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Microbiología de Alimentos/estadística & datos numéricos , Carne de Cerdo/microbiología , Salmonella/aislamiento & purificación , Animales , Humanos , Pruebas de Sensibilidad Microbiana , Prevalencia , Serogrupo , Porcinos , Estados Unidos/epidemiología
15.
J Am Vet Med Assoc ; 258(2): 170-178, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33405979

RESUMEN

Widespread use of antimicrobials in human and veterinary medicine drives the emergence and dissemination of resistant bacteria in human, animal, and environmental reservoirs. The AVMA and FDA Center for Veterinary Medicine have both taken public positions emphasizing the importance of incorporating antimicrobial stewardship in veterinary clinical settings; however, a model for implementing a comprehensive antimicrobial stewardship program in veterinary practice is not readily available. In 2015, The Ohio State University College of Veterinary Medicine began developing a veterinary antimicrobial stewardship program modeled on existing programs in human health-care institutions and the 7 core elements of a successful hospital antimicrobial stewardship program, as defined by the CDC. The program includes comprehensive antimicrobial use guidelines, active environmental surveillance, and enhanced infection control procedures in The Ohio State University Veterinary Medical Center, along with routine monitoring and reporting of antimicrobial prescribing practices and antimicrobial susceptibility patterns of common pathogens isolated from patients and the hospital environment. Finally, programs have been developed to educate clinicians, staff, and students on antimicrobial resistance and appropriate antimicrobial prescribing practices. The antimicrobial stewardship program has been designed to help clinicians and students confidently make judicious antimicrobial use decisions and provide them with actionable steps that can help them act as strong stewards while providing the best care for their patients. This report describes our program and the process involved in developing it, with the intent that the program could serve as a potential model for other veterinary medical institutions.


Asunto(s)
Antiinfecciosos , Programas de Optimización del Uso de los Antimicrobianos , Educación en Veterinaria , Animales , Antibacterianos/uso terapéutico , Humanos , Ohio
16.
Prev Vet Med ; 182: 105116, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32768662

RESUMEN

Rapid transmission and spread of infectious pathogens are enhanced by the agricultural fair environment, where large numbers of livestock and people from numerous backgrounds congregate for several days. The transmission of influenza A virus and zoonotic enteric pathogens to fairgoers is a considerable risk and has occurred several times over the past decade. In an effort to mitigate zoonotic disease transmission in these settings, public health guidelines and recommendations including hand sanitation stations have been implemented. While hand hygiene recommendations to prevent the spread of zoonotic disease are well communicated, it is hypothesized that the adoption of these recommendations by agricultural fairs and fairgoers is low. To test this hypothesis, hand hygiene data collected from 658 agricultural fairs between 2012 and 2019 was analyzed to determine frequency and function of hand sanitation stations at the fairs, as well as utilization of educational signage. In addition, an observational study was performed to calculate the proportion of fairgoers who use hand sanitation stations at the fair. Lastly, samples were taken from working hand sanitation stations present at the exits of livestock barns and tested for the presence of influenza A virus and antimicrobial resistant coliform bacteria. Hand sanitation stations were present at most fairs (77.4 %) as recommended, but only 142 out of 2021 (7.0 %) visitors were observed using the stations. Health risk signage was displayed at more than half of fairs while the proper wash procedure was displayed at less than half. No influenza A virus was detected on any of the hand sanitation stations, however antimicrobial resistant coliform bacteria were recovered from 75.5 % of the sampled hand sanitation stations. Fairs should employ educational material along with functional hand sanitation stations in order to promote hand hygiene at fairs. Stations should be maintained and cleaned often to ensure effectiveness, as hand hygiene continues to be recommended to fairgoers when exiting animal barns to reduce zoonotic disease transmission.


Asunto(s)
Higiene de las Manos/estadística & datos numéricos , Salud Pública , Zoonosis/prevención & control , Agricultura , Animales , Estados Unidos , Zoonosis/transmisión
17.
Vet Ophthalmol ; 23(5): 806-813, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32608547

RESUMEN

OBJECTIVES: To identify the minimum inhibitory concentration (MIC) distribution for commonly used topical antibiotics from isolates of dogs and horses with ulcerative bacterial keratitis, and to investigate changes in MIC values over time and following treatment with topical fluoroquinolones. ANIMALS STUDIED: One hundred thirty-four client-owned dogs and 20 client-owned horses with bacterial ulcerative keratitis. PROCEDURE: Minimum inhibitory concentration values for 14 topical antibiotics were reported for canine and equine cases of bacterial ulcerative keratitis between 2013 and 2018. Changes in MIC values over time and after treatment with topical fluoroquinolones were reported. RESULTS: The three most common bacterial genera isolated were Staphylococcus, Streptococcus, and Pseudomonas. Together, these represented 79.4% of canine cases and 77.4% of equine cases. Overall, isolates from horses tended to have lower MIC values, as did Pseudomonas isolates from both dogs and horses, compared to other bacterial genera, especially Staphylococcus spp. The MIC values of erythromycin and trimethoprim sulfa for Staphylococcus spp., and the MIC value of moxifloxacin for Pseudomonas significantly increased over time. Previous topical fluoroquinolone use was associated with a significant increase in the MIC value of ofloxacin in canine and equine Staphylococcus isolates and current topical fluoroquinolone use was associated with significant increases in the MIC values of ciprofloxacin, moxifloxacin, and ofloxacin in canine Staphylococcus isolates. CONCLUSION: Patients previously or currently treated with topical fluoroquinolones, particularly in Staphylococcus infections, may require alternative antibiotics or additional antibiotic classes other than fluoroquinolones. Bacterial culture with MIC susceptibility testing should be highly recommended when a Staphylococcal infection is suspected.


Asunto(s)
Antibacterianos/administración & dosificación , Úlcera de la Córnea/veterinaria , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Caballos/tratamiento farmacológico , Soluciones Oftálmicas/administración & dosificación , Animales , Antibacterianos/farmacología , Úlcera de la Córnea/tratamiento farmacológico , Úlcera de la Córnea/microbiología , Perros , Farmacorresistencia Bacteriana , Femenino , Caballos , Masculino , Pruebas de Sensibilidad Microbiana , Soluciones Oftálmicas/farmacología , Pseudomonas/efectos de los fármacos , Estudios Retrospectivos , Staphylococcus/efectos de los fármacos , Streptococcus/efectos de los fármacos
18.
J Environ Manage ; 265: 110529, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421557

RESUMEN

Wastewater flows from metropolitan areas, especially those with healthcare inputs, can serve as transport reservoirs for the dissemination of clinically-relevant antimicrobial resistant bacteria (ARB) such as carbapenem- (CR) and colistin-resistant (CoR) strains. Pulsed electric field (PEF) is an emerging wastewater management tool for reducing bacterial loads without generating environmentally harmful byproducts, but it's ability to reduce ARB and their genetic determinants is not well reported. We collected 86, 10-L raw wastewater influent samples from a large metropolitan wastewater treatment plant in Columbus, Ohio and subjected them to low (34 kV cm-1 for 67 µsec) and high (36 kV cm-1 for 89 µsec) PEF treatment. We quantified the PEF effectiveness by measuring concentrations of total coliform bacteria, CR and CoR bacteria, and the epidemic carbapenemase gene, blaKPC, before and after PEF treatment. Utilizing marginal linear regression models with generalized estimating equations, we observed that low and high PEF treatment resulted in a 1.94 (95% CI 2.06-1.81; P < 0.001) and 2.32 (95% CI 2.46-2.18; P < 0.001) log reduction of total coliform bacteria concentrations, respectively. Low and high PEF treatment produced similar log reductions between CR E. coli (2.01 (95% CI 2.15-1.86; P < 0.001); 2.14 (95% CI: 5.30-4.61; P < 0.001)) and CR Enterobacteriaceae concentrations (1.55 (95% CI 1.70-1.41; P < 0.001); 1.86 (95% CI 2.05-1.68; P < 0.001)), and resulted in a 1.15 log (95% CI 1.38-0.93, P < 0.001) and 1.28 log (95% CI 1.54-1.03, P < 0.001) reduction of absolute blaKPC concentrations. Log CoR E. coli concentrations were reduced by 2.47 (95% CI 2.78-2.15; P < 0.001) and 2.52 (95% CI 2.91-2.15; P < 0.001) and CoR Enterobacteriaceae by 2.24 (95% CI 2.52-1.95; P < 0.001) and 2.50 (95% CI 2.89-2.11; P < 0.001) following low and high PEF application. PEF can be applied for wastewater management as an independent treatment method, particularly at critical control points, such as an on-site management of wastewater from hospitals or other healthcare facilities, or in series with other conventional methods to reduce total bacterial loads and concentrations of clinically-relevant ARB.


Asunto(s)
Colistina , Microbiota , Antibacterianos , Proteínas Bacterianas , Carbapenémicos , Escherichia coli , Ohio , Aguas Residuales , beta-Lactamasas
19.
Vet Clin Pathol ; 49(1): 100-105, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32198772

RESUMEN

BACKGROUND: Biochemistry analyzers in many high-throughput laboratories use indirect potentiometry to determine serum electrolyte concentrations, which involves a pre-analytical dilution step that may be associated with artifactual increases or decreases in electrolyte concentrations under circumstances of altered serum water fraction (SWF). Severe hypo- and hyperproteinemia, conditions that cause altered SWF, are recognized but under-emphasized causes of falsely measured serum sodium concentrations. OBJECTIVES: The goals of this study were to determine the average actual SWF (SWFA ) and establish formulae to correct serum sodium concentration measured by indirect potentiometry in hypo- and hyperproteinemic cats. METHODS: Serum samples from 112 feline patients were analyzed for electrolytes (measured by both indirect and direct potentiometry), total protein, albumin, triglycerides, and cholesterol. Each serum sample was also lyophilized to determine the SWFA . A feline-specific formula to estimate SWF (SWFE-FEL ) was developed and evaluated with a multivariable linear model. RESULTS: The mean SWFA in this population of cats was 91.2%, which was significantly different (P < .0001) than the mean (93.9%) calculated using the human estimated formula (SWFE-HUM ). The formula devised for the SWFE-FEL better recapitulated the SWFA than did the SWFE-HUM , and the corrected sodium concentrations calculated using the feline formula were better correlated with serum sodium measured by direct potentiometry than those determined using the human formula. CONCLUSIONS: Application of feline-specific formulae is expected to limit the misinterpretation of electrolyte data from indirect potentiometry when altered SWF occurs. To demonstrate this, a case example of a hypoproteinemic cat is provided.


Asunto(s)
Enfermedades de los Gatos/sangre , Electrólitos/sangre , Hipoproteinemia/veterinaria , Albúmina Sérica/análisis , Sodio/sangre , Animales , Gatos , Hipoproteinemia/sangre , Modelos Lineales , Análisis Multivariante , Potenciometría/veterinaria , Agua
20.
J Dairy Sci ; 102(10): 9236-9240, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31400904

RESUMEN

Transrectal palpation of the reproductive tract is the most common method for pregnancy determination in cattle and is considered a veterinary skill that new veterinary medicine (DVM) graduates should perform proficiently. However, using privately owned cattle to train students can be difficult because producers may believe that transrectal palpation by inexperienced students increases the risk of pregnancy wastage compared with examination by an experienced clinician. We used a randomized field trial of 1,216 healthy Holstein and Jersey cattle in 2 commercial dairy herds to estimate the effect of veterinary student transrectal palpation on early pregnancy loss. All cattle were determined to be pregnant using transrectal ultrasonography at approximately 37 d after artificial insemination. Cattle were then allocated into 2 groups based upon their ear tag number (study group = 598; control group = 618). Cattle in the study group were immediately palpated after ultrasonography by a fourth-year veterinary student, whereas control cattle were not subject to any additional pregnancy assessment. For analysis, the student palpators were divided into 2 groups: students who had previously had formal palpation training via an elective bovine palpation class (n = 30) and students who had not had palpation training (n = 134). All cattle were reevaluated using transrectal ultrasonography approximately 70 d after artificial insemination. A total of 53 (4.36%) animals lost their pregnancy between the first and second pregnancy assessments. Of the animals that lost their pregnancy, 26 (4.35%) were study group cows and 27 (4.37%) were control cows. Of the 26 cows documented to have had pregnancy loss within the study group, 20 out of 378 (5.3%) had been palpated by students who had not taken the palpation elective and 6 out of 220 (2.7%) had been palpated by students who had completed the elective. We found no difference in pregnancy loss between student-palpated and clinician-ultrasounded cattle, supporting the safety of using privately owned animals for student bovine palpation and pregnancy diagnosis training without affecting early pregnancy loss.


Asunto(s)
Aborto Veterinario , Educación en Veterinaria , Palpación , Pruebas de Embarazo , Animales , Bovinos , Femenino , Humanos , Embarazo , Aborto Veterinario/etiología , Palpación/efectos adversos , Pruebas de Embarazo/veterinaria , Estudiantes , Ultrasonografía Prenatal/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...