Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151945

RESUMEN

Ineffective endometrial matrix remodeling, a key factor in infertility, impedes embryo implantation in the uterine wall. Our study reveals the cellular and molecular impact of human collagenase-1 administration in mouse uteri, demonstrating enhanced embryo implantation rates. Collagenase-1 promotes remodeling of the endometrial ECM, degrading collagen fibers and proteoglycans. This process releases matrix-bound bioactive factors (e.g., VEGF, decorin), facilitating vascular permeability and angiogenesis. Collagenase-1 elevates embryo implantation regulators, including NK cell infiltration and the key cytokine LIF. Remarkably, uterine tissue maintains structural integrity despite reduced endometrial collagen fiber tension. In-utero collagenase-1 application rescues implantation in heat stress and embryo transfer models, known for low implantation rates. Importantly, ex vivo exposure of human uterine tissue to collagenase-1 induces collagen de-tensioning and VEGF release, mirroring remodeling observed in mice. Our research highlights the potential of collagenases to induce and orchestrate cellular and molecular processes enhancing uterine receptivity for effective embryo implantation. This innovative approach underscores ECM remodeling mechanisms critical for embryo implantation.


Asunto(s)
Colagenasas , Implantación del Embrión , Útero , Femenino , Animales , Ratones , Colagenasas/metabolismo , Humanos , Útero/metabolismo , Matriz Extracelular/metabolismo , Endometrio/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Embarazo , Transferencia de Embrión/métodos , Colágeno/metabolismo , Ratones Endogámicos C57BL
2.
Phys Med Biol ; 65(7): 075007, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32053802

RESUMEN

Intravital imaging of brain vasculature through the intact cranium in vivo is based on the evolution of the fluorescence intensity and provides an ability to characterize various physiological processes in the natural context of cellular resolution. The involuntary motions of the examined subjects often limit in vivo non-invasive functional optical imaging. Conventional imaging diagnostic modalities encounter serious difficulties in correction of artificial motions, associated with fast high dynamics of the intensity values in the collected image sequences, when a common reference cannot be provided. In the current report, we introduce an alternative solution based on a time-space Fourier transform method so-called K-Omega. We demonstrate that the proposed approach is effective for image stabilization of fast dynamic image sequences and can be used autonomously without supervision and assignation of a reference image.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento , Imagen Óptica , Humanos , Neuroimagen , Factores de Tiempo
3.
J Opt Soc Am A Opt Image Sci Vis ; 32(3): 447-55, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26366656

RESUMEN

Expressions of the correlation between the log-amplitude and the phase of a wavefront propagating through atmospheric turbulence are presented. These expressions are useful to evaluate the feasibility of proposed methods to increase the confidence level of the detection of faint transient astronomical objects. The properties of the derived angular correlation functions are discussed using usual synthetic turbulence profiles. The close formulation between the phase and the log-amplitude allows an analytic formulation in the Rytov approximation. Equations contain the product of an arbitrary number of hypergeometric functions that are evaluated using the Mellin transforms integration method.

4.
J Opt Soc Am A Opt Image Sci Vis ; 28(8): 1732-40, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21811336

RESUMEN

A general expression of the spatial correlation functions of quantities related to the phase fluctuations of a wave that have propagated through the atmospheric turbulence are derived. A generalization of the method to integrand containing the product of an arbitrary number of hypergeometric functions is presented. The formalism is able to give the coefficients of phase-expansion functions orthogonal over an arbitrary circularly symmetric weighting function for an isotropic turbulence spectrum, as well as to describe the effect of the finite outer and inner scales of the turbulence and to describe the spherical propagation or to derive the effects of the analytical operators acting on the phase such as the derivatives of any order. The derivation of the generalized integrals with multiparameters is based on the Mellin transforms integration method.

5.
J Opt Soc Am A Opt Image Sci Vis ; 27(11): 2459-67, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21045911

RESUMEN

We present a method to extract from a single image both object and point spread function using low contrast features of an extended field of view. Invoking the principal ergodic on stochastic turbulent phenomena, we show that the aberration parameters, characteristics of the earth's turbulence, can be recovered from multiple features within an isoplanatic patch. The ensemble statistics is replacing the spatial statistics of a single realization to derive an equivalent modulation transfer function and to apply usual deconvolution techniques such as Richardson-Lucy algorithms. The reliability of this postprocessing treatment has been tested on synthetic data, on solar granulation observations performed at La Lunette Jean Rosch du Pic du Midi, and during the event of the Venus transit at La Tour Solaire de Meudon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA