Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 14(3)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35545019

RESUMEN

Manyin vitromodels of neural physiology utilize neuronal networks established on two-dimensional substrates. Despite the simplicity of these 2D neuronal networks, substrate stiffness may influence cell morphology, network interactions and how neurons communicate and function. With this perspective, three-dimensional (3D) gel encapsulation is a powerful to recapitulating aspects ofin vivofeatures, yet such an approach is often limited in terms of the level of resolution and feature size relevant for modelling aspects of brain architecture. Here, we report 3D bioplotting of rat primary cortical neural cells using a hydrogel system comprising gelatin norbornene (GelNB) and poly (ethylene glycol) dithiol (PEGdiSH). This bioink benefits from a rapid photo-click chemistry, yielding eight-layer crosshatch neural scaffolds and a filament width of 350µm. The printability of this system depends on hydrogel concentration, printing temperature, extrusion pressure and speed. These parameters were studied via quantitative comparison between rheology and filament dimensions to determine the optimal printing conditions. Under optimal conditions, cell viability of bioprinted primary cortical neurons at day 1 (68 ± 2%) and at day 7 (68 ± 1%) were comparable to the 2D control group (72 ± 7%). The present study relates material rheology and filament dimensions to generate compliant free-standing neural constructs through bioplotting of low-concentration GelNB-PEGdiSH, which may provide a step forward to study 3D neuronal function and network formation.


Asunto(s)
Bioimpresión , Animales , Bioimpresión/métodos , Gelatina , Hidrogeles , Impresión Tridimensional , Ratas , Reología
2.
J Mech Behav Biomed Mater ; 97: 149-158, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31121433

RESUMEN

Integrating porous networks in load-bearing implants is essential in order to improve mechanical compatibility with the host tissue. Additive manufacturing has enabled the optimisation of the mechanical properties of metallic biomaterials, notably with the use of novel periodic regular geometries as porous structures. In this work, we successfully produced solid and lattice structures made of Ti-25Ta alloy with selective laser melting (SLM) using a Schwartz primitive unit-cell for the first time. The manufacturability and repeatability of the process was assessed through macrostructural and microstructural observations along with compressive testing. The mechanical properties are found to be suitable for bone replacement applications, showing significantly reduced elastic moduli, ranging from 14 to 36 GPa depending on the level of porosity. Compared to the conventionally used biomedical Ti-6Al-4V alloy, the Ti-Ta alloy offers superior mechanical compatibility for the targeted applications with lower elastic modulus, similar strength and higher ductility, making the Ti-25Ta alloy a promising candidate for a new generation of load-bearing implants.


Asunto(s)
Aleaciones/química , Tantalio/química , Titanio/química , Soporte de Peso , Materiales Biocompatibles/química , Sustitutos de Huesos , Módulo de Elasticidad , Rayos Láser , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Porosidad , Polvos , Prótesis e Implantes , Diseño de Prótesis , Estrés Mecánico , Propiedades de Superficie , Resistencia a la Tracción
3.
Sci Rep ; 7(1): 11844, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928369

RESUMEN

Structural hierarchy is known to enhance the performance of many of Nature's materials. In this work, we apply the idea of hierarchical structure to topologically interlocked assemblies, obtained from measurements under point loading, undertaken on identical discrete block ensembles with matching non-planar surfaces. It was demonstrated that imposing a hierarchical structure adds to the load bearing capacity of topological interlocking assemblies. The deformation mechanics of these structures was also examined numerically by finite element analysis. Multiple mechanisms of surface contact, such as slip and tilt of the building blocks, were hypothesised to control the mechanical response of topological interlocking assemblies studied. This was confirmed using as a model a newly designed interlocking block, where slip was suppressed, which produced a gain in peak loading. Our study highlights the possibility of tailoring the mechanical response of topological interlocking assemblies using geometrical features of both the element geometry and the contact surface profile.

4.
J Mech Behav Biomed Mater ; 62: 384-398, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27258932

RESUMEN

Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4.


Asunto(s)
Aleaciones Dentales , Implantes Dentales , Titanio , Circonio , Ensayo de Materiales , Propiedades de Superficie
5.
Sci Rep ; 6: 26706, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216277

RESUMEN

Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking.

6.
Sci Rep ; 5: 10732, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26040634

RESUMEN

Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations.

7.
Sci Rep ; 4: 3783, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24445490

RESUMEN

The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...