Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 14(5): 711-718, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35925021

RESUMEN

Soils are subjected to multiple anthropogenic modifications, but the synergistic impacts of simultaneous environmental stressors on below-ground communities are poorly understood. We used a large-scale (1152 plots), long-term (26 years), multi-factorial grassland experiment to assess the impact of five common agricultural practises (pesticides, herbicide, liming, fertilizers and grazing exclusion) and their interactive effects on the composition and activity of soil microbial communities. We confirmed that pH strongly impacts belowground communities, but further demonstrate that pH strongly mediates the impacts of other management factors. Notably, there was a significant interaction between liming and the effect of pesticide application, with only half of the taxa responding to pesticide being shared in both limed and unlimed treatments. Likewise, nutrient amendments significantly altered bacterial community structure in acidic soils. Not only do these results highlight an hierarchy of effect of commonly used agricultural practices but also the widespread interactions between treatments: many taxa were significantly affected by interactions between treatments, even in the absence of significant main effects. Furthermore, the results demonstrated that chemical amendments may not percolate deeply into physically unperturbed soils with effects concentrated between 0 and 30 cm, despite 20+ years of treatment. The research shows that future changes to agricultural practices will need to consider interactions among multiple factors.


Asunto(s)
Herbicidas , Plaguicidas , Bacterias/genética , Compuestos de Calcio , Fertilizantes , Herbicidas/farmacología , Óxidos , Suelo/química , Microbiología del Suelo
2.
Environ Microbiol Rep ; 14(4): 577-583, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35445561

RESUMEN

Fusarium is an economically important crop pathogen but spends a large part of its life cycle in bulk soil environments where it interacts with a diverse community of soil microbes. Antagonistic interactions (e.g. competition) between the resident microbial community and Fusarium could constrain the growth of Fusarium in soil, which might therefore slow or prevent Fusarium establishment. We tracked Fusarium oxysporum in floriculture greenhouses where the soil had been steam-sterilized to remove Fusarium. The data indicated a resurgence of soil bacteria and fungi during the first 90 days post-sterilization, followed by a rapid decline in subsequent weeks, which was associated with an increase in F. oxysporum abundance at 148 days post sterilization. These changes over time were associated with successional changes in the bacterial but not the fungal communities. The results illustrate that, although soil steaming clears Fusarium in the short term, it may exacerbate re-emergence as the resident community is continually depleted by the steaming process while Fusarium benefits from nutrients released by steaming. Observations suggest combining steaming with microbial inoculations could help reduce the recovery of Fusarium reducing the fungal load in the first instance and preventing subsequent build-up by giving a head start to its saprophytic competitors.


Asunto(s)
Fusarium , Microbiota , Bacterias , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Suelo , Microbiología del Suelo , Vapor , Esterilización
3.
ISME J ; 15(10): 2947-2955, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33941889

RESUMEN

Patterns of species diversity provide fundamental insights into the underlying mechanisms and processes that regulate biodiversity. The species-time relationship (STR) has the potential to be one such pattern; in a comparable manner to its more extensively studied spatial analogue, the species-area relationship (SAR), which has been pivotal in the development of ecological models and theories. We sought to determine the mechanisms and processes that underpin STR patterns of temporal turnover by sampling bacterial communities within ten water-filled tree-holes on the same European beech tree through the course of a year. We took this natural model system to represent an archipelago of islands of varying sizes and with shared common immigration sources. We observed an inverse relationship between STR-derived turnover rates and island size. Further, turnover was related to island size and not island isolation within the study system as indicated by a low frequency of dispersal limitation and high homogenizing dispersal. Compared to SARs, STRs are understudied, as such, the findings from the current study should provide a renewed interest in STR-based patterns and processes.


Asunto(s)
Bacterias , Biodiversidad , Bacterias/genética , Modelos Biológicos , Modelos Teóricos , Árboles
4.
Ecol Lett ; 21(4): 516-524, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29446215

RESUMEN

Successful microbial invasions are determined by a species' ability to occupy a niche in the new habitat whilst resisting competitive exclusion by the resident community. Despite the recognised importance of biotic factors in determining the invasiveness of microbial communities, the success and impact of multiple concurrent invaders on the resident community has not been examined. Simultaneous invasions might have synergistic effects, for example if resident species need to exhibit divergent phenotypes to compete with the invasive populations. We used three phylogenetically diverse bacterial species to invade two compositionally distinct communities in a controlled, naturalised in vitro system. By initiating the invader introductions at different stages of succession, we could disentangle the relative importance of resident community structure, invader diversity and time pre-invasion. Our results indicate that multiple invaders increase overall invasion success, but do not alter the successional trajectory of the whole community.


Asunto(s)
Bacterias , Ecología , Especies Introducidas , Ecosistema , Microbiota
5.
ISME J ; 10(9): 2259-68, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26894447

RESUMEN

Bacterial communities are vital for many economically and ecologically important processes. The role of bacterial community composition in determining ecosystem functioning depends critically on interactions among bacterial taxa. Several studies have shown that, despite a predominance of negative interactions in communities, bacteria are able to display positive interactions given the appropriate evolutionary or ecological conditions. We were interested in how interspecific interactions develop over time in a naturalistic setting of low resource supply rates. We assembled aquatic bacterial communities in microcosms and assayed the productivity (respiration and growth) and substrate degradation while tracking community composition. The results demonstrated that while bacterial communities displayed strongly negative interactions during the early phase of colonisation and acclimatisation to novel biotic and abiotic factors, this antagonism declined over time towards a more neutral state. This was associated with a shift from use of labile substrates in early succession to use of recalcitrant substrates later in succession, confirming a crucial role of resource dynamics in linking interspecific interactions with ecosystem functioning.


Asunto(s)
Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Interacciones Microbianas , Microbiota , Bacterias/clasificación , Biodiversidad , Evolución Biológica , Ecología , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA