Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955468

RESUMEN

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Asunto(s)
Citosol , Mitocondrias , Prohibitinas , ARN Bicatenario , ARN Mitocondrial , Humanos , Citosol/metabolismo , Mitocondrias/metabolismo , ARN Bicatenario/metabolismo , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , Línea Celular Tumoral , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transporte de ARN , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Mitocondriales
3.
Nature ; 615(7953): 712-719, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922590

RESUMEN

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Metabolismo Energético , Neoplasias Pulmonares , Mitocondrias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/ultraestructura , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Gotas Lipídicas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/ultraestructura , Microscopía Electrónica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Fenotipo , Tomografía de Emisión de Positrones
4.
Sci Rep ; 12(1): 3592, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246558

RESUMEN

Head and neck cancer is the sixth most common cancer in the world, with more than 300,000 deaths attributed to the disease annually. Aggressive surgical resection often with adjuvant chemoradiation is the cornerstone of treatment. However, the necessary chemoradiation treatment can result in collateral damage to adjacent vital structures causing a profound impact on quality of life. Here, we present a novel polymer of poly(lactic-co-glycolic) acid and polyvinyl alcohol that can serve as a versatile multidrug delivery platform as well as for detection on cross-sectional imaging while functioning as a fiduciary marker for postoperative radiotherapy and radiotherapeutic dosing. In a mouse xenograft model, the dual-layered polymer composed of calcium carbonate/thymoquinone was used for both polymer localization and narrow-field infusion of a natural therapeutic compound. A similar approach can be applied in the treatment of head and neck cancer patients, where immunotherapy and traditional chemotherapy can be delivered simultaneously with independent release kinetics.


Asunto(s)
Neoplasias de Cabeza y Cuello , Polímeros , Animales , Quimioradioterapia Adyuvante , Neoplasias de Cabeza y Cuello/terapia , Humanos , Ratones , Polímeros/química , Calidad de Vida
5.
Cell Chem Biol ; 29(3): 423-435.e10, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34715056

RESUMEN

Efforts to target glucose metabolism in cancer have been limited by the poor potency and specificity of existing anti-glycolytic agents and a poor understanding of the glucose dependence of cancer subtypes in vivo. Here, we present an extensively characterized series of potent, orally bioavailable inhibitors of the class I glucose transporters (GLUTs). The representative compound KL-11743 specifically blocks glucose metabolism, triggering an acute collapse in NADH pools and a striking accumulation of aspartate, indicating a dramatic shift toward oxidative phosphorylation in the mitochondria. Disrupting mitochondrial metabolism via chemical inhibition of electron transport, deletion of the malate-aspartate shuttle component GOT1, or endogenous mutations in tricarboxylic acid cycle enzymes, causes synthetic lethality with KL-11743. Patient-derived xenograft models of succinate dehydrogenase A (SDHA)-deficient cancers are specifically sensitive to KL-11743, providing direct evidence that TCA cycle-mutant tumors are vulnerable to GLUT inhibitors in vivo.


Asunto(s)
Ciclo del Ácido Cítrico , Neoplasias , Ácido Aspártico/metabolismo , Glucosa/metabolismo , Humanos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
6.
Cancer Res ; 81(12): 3295-3308, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33853830

RESUMEN

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/deficiencia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Granulocitos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Células Supresoras de Origen Mieloide/inmunología , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nat Commun ; 12(1): 1876, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767183

RESUMEN

Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.


Asunto(s)
COVID-19/patología , Ciclo del Ácido Cítrico/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Benzamidas/farmacología , Línea Celular , Chlorocebus aethiops , Glucosa/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Pulmón/metabolismo , Pulmón/virología , Morfolinas/farmacología , Naftiridinas/farmacología , Pirimidinas/farmacología , Piruvato Carboxilasa/biosíntesis , SARS-CoV-2/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos
8.
Cell Metab ; 33(5): 1013-1026.e6, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609439

RESUMEN

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Asparagina/metabolismo , Mitocondrias/metabolismo , Animales , Asparagina/farmacología , Ácido Aspártico/deficiencia , Ácido Aspártico/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dieta/veterinaria , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos NOD , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Nucleótidos/metabolismo , Tasa de Supervivencia
9.
Cancer Immunol Immunother ; 70(8): 2389-2400, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33507343

RESUMEN

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [KrasG12D (K), KrasG12DTp53-/-(KP), KrasG12DTp53+/-Lkb1-/- (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU). Increasing the TMB enhanced host anti-tumor T cell responses and improved anti-PD-1 efficacy in syngeneic models across all genetic backgrounds. However, limited anti-PD-1 efficacy was observed in the KPL cell lines with increased TMB, which possessed a distinct immunosuppressed tumor microenvironment (TME) primarily composed of granulocytic myeloid-derived suppressor cells (G-MDSCs). This KPL phenotype is consistent with findings in human KRAS-mutant NSCLC where LKB1 loss is a driver of primary resistance to PD-1 blockade. In summary, these novel Kras-mutant NSCLC murine models with known driver mutations and increased TMB have distinct TMEs and recapitulate the therapeutic vulnerabilities of human NSCLC. We anticipate that these immunogenic models will facilitate the development of innovative immunotherapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética
12.
Nature ; 575(7782): 380-384, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666695

RESUMEN

Mitochondria are essential regulators of cellular energy and metabolism, and have a crucial role in sustaining the growth and survival of cancer cells. A central function of mitochondria is the synthesis of ATP by oxidative phosphorylation, known as mitochondrial bioenergetics. Mitochondria maintain oxidative phosphorylation by creating a membrane potential gradient that is generated by the electron transport chain to drive the synthesis of ATP1. Mitochondria are essential for tumour initiation and maintaining tumour cell growth in cell culture and xenografts2,3. However, our understanding of oxidative mitochondrial metabolism in cancer is limited because most studies have been performed in vitro in cell culture models. This highlights a need for in vivo studies to better understand how oxidative metabolism supports tumour growth. Here we measure mitochondrial membrane potential in non-small-cell lung cancer in vivo using a voltage-sensitive, positron emission tomography (PET) radiotracer known as 4-[18F]fluorobenzyl-triphenylphosphonium (18F-BnTP)4. By using PET imaging of 18F-BnTP, we profile mitochondrial membrane potential in autochthonous mouse models of lung cancer, and find distinct functional mitochondrial heterogeneity within subtypes of lung tumours. The use of 18F-BnTP PET imaging enabled us to functionally profile mitochondrial membrane potential in live tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Neoplasias Pulmonares/fisiopatología , Potencial de la Membrana Mitocondrial , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Ratones Transgénicos , Compuestos Organofosforados , Tomografía de Emisión de Positrones
13.
Cancer Cell ; 35(5): 709-711, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31085172

RESUMEN

In this issue of Cancer Cell, Elgendy et al. describe the use of intermittent fasting as a strategy to reduce tumor glucose levels and sensitize otherwise resistant tumor cells to metformin. The authors demonstrate that intermittent fasting before metformin treatment sensitized tumors to metformin and significantly reduced tumor growth.


Asunto(s)
Hipoglucemia , Metformina , Ayuno , Glucógeno Sintasa Quinasa 3 beta , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides
14.
Cell ; 175(1): 117-132.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197082

RESUMEN

The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Metabolismo de los Hidratos de Carbono/fisiología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Glucólisis/fisiología , Humanos , Ácido Hialurónico/fisiología , Hialuronoglucosaminidasa/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Tristetraprolina/metabolismo , Tristetraprolina/fisiología
15.
Mol Cell Oncol ; 5(3): e1297883, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250881

RESUMEN

We have recently demonstrated that targeted inhibition of epidermal growth factor receptor (EGFR) signaling and glutaminase led to metabolic crisis in EGFR mutant lung adenocarcinomas and significant tumor regression in mouse xenograft models. Combining targeted therapies that restrict the metabolic activity and growth of tumors represents a therapeutic strategy that holds promise for clinical translation.

16.
J Vis Exp ; (137)2018 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-30080208

RESUMEN

A hallmark of advanced tumors is a switch to aerobic glycolysis that is readily measured by [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) imaging. Co-mutations in the KRAS proto-oncogene and the LKB1 tumor suppressor gene are frequent events in lung cancer that drive hypermetabolic, glycolytic tumor growth. A critical pathway regulating the growth and metabolism of these tumors is the mechanistic target of the rapamycin (mTOR) pathway, which can be effectively targeted using selective catalytic mTOR kinase inhibitors. The mTOR inhibitor MLN0128 suppresses glycolysis in mice bearing tumors with Kras and Lkb1 co-mutations, referred to as KL mice. The therapy response in KL mice is first measured by 18F-FDG PET and computed tomography (CT) imaging before and after the delivery of MLN0128. By utilizing 18F-FDG PET/CT, researchers are able to measure dynamic changes in the glucose metabolism in genetically engineered mouse models (GEMMs) of lung cancer following a therapeutic intervention with targeted therapies. This is followed by ex vivo autoradiography and a quantitative immunohistochemical (qIHC) analysis using morphometric software. The use of qIHC enables the detection and quantification of distinct changes in the biomarker profiles following treatment as well as the characterization of distinct tumor pathologies. The coupling of PET imaging to quantitative histology is an effective strategy to identify metabolic and therapeutic responses in vivo in mouse models of disease.


Asunto(s)
Fluorodesoxiglucosa F18 , Glucosa/análisis , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Humanos , Neoplasias Pulmonares/patología , Ratones , Proto-Oncogenes Mas , Radiofármacos
17.
Cancer Cell ; 33(5): 905-921.e5, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29763624

RESUMEN

Altered metabolism is a hallmark of cancer growth, forming the conceptual basis for development of metabolic therapies as cancer treatments. We performed in vivo metabolic profiling and molecular analysis of lung squamous cell carcinoma (SCC) to identify metabolic nodes for therapeutic targeting. Lung SCCs adapt to chronic mTOR inhibition and suppression of glycolysis through the GSK3α/ß signaling pathway, which upregulates glutaminolysis. Phospho-GSK3α/ß protein levels are predictive of response to single-therapy mTOR inhibition while combinatorial treatment with the glutaminase inhibitor CB-839 effectively overcomes therapy resistance. In addition, we identified a conserved metabolic signature in a broad spectrum of hypermetabolic human tumors that may be predictive of patient outcome and response to combined metabolic therapies targeting mTOR and glutaminase.


Asunto(s)
Bencenoacetamidas/administración & dosificación , Compuestos de Boro/administración & dosificación , Carcinoma de Células Escamosas/metabolismo , Glutamina/metabolismo , Glicina/análogos & derivados , Glucógeno Sintasa Quinasa 3/metabolismo , Neoplasias Pulmonares/metabolismo , Tiadiazoles/administración & dosificación , Animales , Bencenoacetamidas/farmacología , Compuestos de Boro/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicina/administración & dosificación , Glicina/farmacología , Glucólisis , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Trasplante de Neoplasias , Transducción de Señal/efectos de los fármacos , Tiadiazoles/farmacología
18.
Mol Imaging Biol ; 20(2): 205-212, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28905308

RESUMEN

PURPOSE: The aim of this study was the automated synthesis of the mitochondrial membrane potential sensor 4-[18F]fluorobenzyl-triphenylphosphonium ([18F]FBnTP) on a commercially available synthesizer in activity yields (AY) that allow for imaging of multiple patients. PROCEDURES: A three-pot, four-step synthesis was implemented on the ELIXYS FLEX/CHEM radiosynthesizer (Sofie Biosciences) and optimized for radiochemical yield (RCY), radiochemical purity (RCP) as well as chemical purity during several production runs (n = 24). The compound was purified by solid-phase extraction (SPE) with a Sep-Pak Plus Accell CM cartridge, thereby avoiding HPLC purification. RESULTS: Under optimized conditions, AY of 1.4-2.2 GBq of [18F]FBnTP were obtained from 9.4 to 12.0 GBq [18F]fluoride in 90-92 min (RCY = 28.6 ± 5.1 % with n = 3). Molar activities ranged from 80 to 99 GBq/µmol at the end of synthesis. RCP of final formulations was > 99 % at the end of synthesis and > 95 % after 8 h. With starting activities of 23.2-33.0 GBq, RCY decreased to 16.1 ± 0.4 % (n = 3). The main cause of the decline in RCY when high amounts of [18F]fluoride are used is radiolytic decomposition of [18F]FBnTP during SPE purification. CONCLUSIONS: In initial attempts, the probe was synthesized with RCY < 0.6 % when starting activities up to 44.6 GBq were used. Rapid radiolysis of the intermediate 4-[18F]fluorobenzaldehyde and the final product [18F]FBnTP during purification was identified as the main cause for low yields in high-activity runs. Radiolytic decomposition was hindered by the addition of radical scavengers during synthesis, purification, and formulation, thereby improving AY and RCP. The formulated probe in injectable form was synthesized without the use of HPLC and passed all applicable quality control tests.


Asunto(s)
Sondas Moleculares/síntesis química , Compuestos Organofosforados/síntesis química , Tomografía de Emisión de Positrones , Potenciometría , Automatización , Sondas Moleculares/química , Compuestos Organofosforados/química
19.
Biomol Ther (Seoul) ; 26(1): 81-92, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212309

RESUMEN

It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

20.
Cell Rep ; 18(3): 601-610, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28099841

RESUMEN

Cancer cells exhibit increased use of nutrients, including glucose and glutamine, to support the bioenergetic and biosynthetic demands of proliferation. We tested the small-molecule inhibitor of glutaminase CB-839 in combination with erlotinib on epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) as a therapeutic strategy to simultaneously impair cancer glucose and glutamine utilization and thereby suppress tumor growth. Here, we show that CB-839 cooperates with erlotinib to drive energetic stress and activate the AMP-activated protein kinase (AMPK) pathway in EGFR (del19) lung tumors. Tumor cells undergo metabolic crisis and cell death, resulting in rapid tumor regression in vivo in mouse NSCLC xenografts. Consistently, positron emission tomography (PET) imaging with 18F-fluoro-2-deoxyglucose (18F-FDG) and 11C-glutamine (11C-Gln) of xenografts indicated reduced glucose and glutamine uptake in tumors following treatment with CB-839 + erlotinib. Therefore, PET imaging with 18F-FDG and 11C-Gln tracers can be used to non-invasively measure metabolic response to CB-839 and erlotinib combination therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Bencenoacetamidas/toxicidad , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/toxicidad , Glutaminasa/antagonistas & inhibidores , Tiadiazoles/toxicidad , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/efectos de los fármacos , Bencenoacetamidas/uso terapéutico , Radioisótopos de Carbono/química , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/uso terapéutico , Fluorodesoxiglucosa F18/química , Glutaminasa/metabolismo , Glutamina/química , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Mutación , Interferencia de ARN , Radiofármacos/química , Tiadiazoles/uso terapéutico , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA