Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 56(13): 1989-2006.e6, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118203

RESUMEN

Oncogenes can alter metabolism by changing the balance between anabolic and catabolic processes. However, how oncogenes regulate tumor cell biomass remains poorly understood. Using isogenic MCF10A cells transformed with nine different oncogenes, we show that specific oncogenes reduce the biomass of cancer cells by promoting extracellular vesicle (EV) release. While MYC and AURKB elicited the highest number of EVs, each oncogene selectively altered the protein composition of released EVs. Likewise, oncogenes alter secreted miRNAs. MYC-overexpressing cells require ceramide, whereas AURKB requires ESCRT to release high levels of EVs. We identify an inverse relationship between MYC upregulation and activation of the RAS/MEK/ERK signaling pathway for regulating EV release in some tumor cells. Finally, lysosome genes and activity are downregulated in the context of MYC and AURKB, suggesting that cellular contents, instead of being degraded, were released via EVs. Thus, oncogene-mediated biomass regulation via differential EV release is a new metabolic phenotype.


Asunto(s)
Aurora Quinasa B/genética , Vesículas Extracelulares/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogénicas c-myc/genética , Metabolismo Energético/genética , Vesículas Extracelulares/genética , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Humanos , Lisosomas/genética , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas/genética , Metabolismo/genética , Transducción de Señal/genética
2.
Nat Chem Biol ; 14(8): 768-777, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29942081

RESUMEN

Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasa A/antagonistas & inhibidores , Azepinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas de Plantas/metabolismo , Pirimidinas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Aurora Quinasa A/metabolismo , Azepinas/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Plantas/química , Pirimidinas/química
3.
EMBO Rep ; 18(4): 569-585, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28219903

RESUMEN

How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC-driven tumors. We find that fewer glutamine-derived carbons are incorporated into GSH in tumor tissue relative to non-tumor tissue. Expression of GCLC, the rate-limiting enzyme of GSH synthesis, is attenuated by the MYC-induced microRNA miR-18a. Inhibition of miR-18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC-driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC-dependent attenuation of GCLC by miR-18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.


Asunto(s)
Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Glutatión/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular Tumoral , Análisis por Conglomerados , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/genética , Redes y Vías Metabólicas/genética , Metaboloma , Metabolómica/métodos , Ratones , Ratones Transgénicos , MicroARNs/genética , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN
4.
Nat Med ; 22(11): 1321-1329, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27775705

RESUMEN

Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.


Asunto(s)
Carcinoma Ductal de Mama/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Etiquetado Corte-Fin in Situ , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Ratones Transgénicos , Microscopía Fluorescente , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
5.
PLoS One ; 11(5): e0154890, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27191603

RESUMEN

We report generation of induced pluripotent stem cell (iPSC) lines from ten Parkinson's disease (PD) patients carrying SNCA, PARK2, LRRK2, and GBA mutations, and one age-matched control. After validation of pluripotency, long-term genome stability, and integration-free reprogramming, eight of these lines (one of each SNCA, LRRK2 and GBA, four PARK2 lines, and the control) were differentiated into neural stem cells (NSC) and subsequently to dopaminergic cultures. We did not observe significant differences in the timeline of neural induction and NSC derivation between the patient and control line, nor amongst the patient lines, although we report considerable variability in the efficiency of dopaminergic differentiation among patient lines. We performed whole genome expression analyses of the lines at each stage of differentiation (fibroblast, iPSC, NSC, and dopaminergic culture) in an attempt to identify alterations by large-scale evaluation. While gene expression profiling clearly distinguished cells at different stages of differentiation, no mutation-specific clustering or difference was observed, though consistent changes in patient lines were detected in genes associated mitochondrial biology. We further examined gene expression in a stress model (MPTP-induced dopaminergic neuronal death) using two clones from the SNCA triplication line, and detected changes in genes associated with mitophagy. Our data suggested that even a well-characterized line of a monogenic disease may not be sufficient to determine the cause or mechanism of the disease, and highlights the need to use more focused strategies for large-scale data analysis.


Asunto(s)
Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Mutación , Células-Madre Neurales/citología , Neurogénesis , Enfermedad de Parkinson/genética , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Genoma Humano , Glucosilceramidasa/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mitocondrias/metabolismo , Mitofagia , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/patología , Ubiquitina-Proteína Ligasas/genética , alfa-Sinucleína/genética
6.
Curr Biol ; 25(23): 3110-8, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26585277

RESUMEN

The intrinsic (mitochondrial) apoptotic pathway is a conserved cell death program crucial for eliminating superfluous, damaged, or incorrectly specified cells, and the multi-domain pro-death BCL-2 family proteins BAX and BAK are required for its activation. In response to internal damage or developmental signals, BAX and/or BAK permeabilize the mitochondrial outer membrane, resulting in cytochrome c release and activation of effector caspases such as Caspase-3 (Casp3). While the mitochondrial apoptotic pathway plays a critical role during late embryonic development in mammals, its role during early development remains controversial. Here, we show that Bax(-/-)Bak(-/-) murine embryonic stem cells (ESCs) display defects during the exit from pluripotency, both in culture and during teratoma formation. Specifically, we find that when ESCs are stimulated to differentiate, a subpopulation fails to do so and instead upregulates FAS in a p53-dependent manner to trigger Bax/Bak-dependent apoptosis. Blocking this apoptotic pathway prevents the removal of these poorly differentiated cells, resulting in the retention of cells that have not exited pluripotency. Taken together, our results provide further evidence for heterogeneity in the potential of ESCs to successfully differentiate and reveal a novel role for apoptosis in promoting efficient ESC differentiation by culling cells that are slow to exit pluripotency.


Asunto(s)
Apoptosis , Diferenciación Celular , Células Madre Embrionarias/fisiología , Mitocondrias/fisiología , Receptor fas/genética , Animales , Ratones , Transducción de Señal , Receptor fas/metabolismo
7.
Stem Cell Reports ; 4(5): 847-59, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25843045

RESUMEN

In this study, we used patient-specific and isogenic PARK2-induced pluripotent stem cells (iPSCs) to show that mutations in PARK2 alter neuronal proliferation. The percentage of TH(+) neurons was decreased in Parkinson's disease (PD) patient-derived neurons carrying various mutations in PARK2 compared with an age-matched control subject. This reduction was accompanied by alterations in mitochondrial:cell volume fraction (mitochondrial volume fraction). The same phenotype was confirmed in isogenic PARK2 null lines. The mitochondrial phenotype was also seen in non-midbrain neurons differentiated from the PARK2 null line, as was the functional phenotype of reduced proliferation in culture. Whole genome expression profiling at various stages of differentiation confirmed the mitochondrial phenotype and identified pathways altered by PARK2 dysfunction that include PD-related genes. Our results are consistent with current model of PARK2 function where damaged mitochondria are targeted for degradation via a PARK2/PINK1-mediated mechanism.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , ADN Mitocondrial/metabolismo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipificación , Mitocondrias/ultraestructura , Mutación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo
8.
Stem Cell Reports ; 4(3): 374-89, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25733019

RESUMEN

Embryonic stem cells (ESCs) have adopted an accelerated cell-cycle program with shortened gap phases and precocious expression of cell-cycle regulatory proteins, including cyclins and cyclin-dependent kinases (CDKs). We examined the effect of CDK inhibition on the pathways regulating proliferation and survival of ESCs. We found that inhibiting cyclin-dependent kinase 1 (CDK1) leads to activation of the DNA damage response, nuclear p53 stabilization, activation of a subset of p53 target genes including NOXA, and negative regulation of the anti-apoptotic protein MCL1 in human and mouse ESCs, but not differentiated cells. We demonstrate that MCL1 is highly expressed in ESCs and loss of MCL1 leads to ESC death. Finally, we show that clinically relevant CDK1 inhibitors prevent formation of ESC-derived tumors and induce necrosis in established ESC-derived tumors. Our data demonstrate that ES cells are uniquely sensitive to CDK1 inhibition via a p53/NOXA/MCL1 pathway.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Transformación Celular Neoplásica , Células Madre Embrionarias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Teratoma/etiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Proteína Quinasa CDC2/genética , Diferenciación Celular , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Ciclina A/genética , Ciclina B1/genética , Ciclina B2/genética , Daño del ADN/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/patología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Interferencia de ARN , Teratoma/patología , Proteína p53 Supresora de Tumor/genética
9.
Stem Cells Dev ; 23(4): 406-20, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24074155

RESUMEN

Recent advances in human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) biology enable generation of dopaminergic neurons for potential therapy and drug screening. However, our current understanding of molecular and cellular signaling that controls human dopaminergic development and function is limited. Here, we report on a whole genome analysis of gene expression during dopaminergic differentiation of human ESC/iPSC using Illumina bead microarrays. We generated a transcriptome data set containing the expression levels of 28,688 unique transcripts by profiling five lines (three ESC and two iPSC lines) at four stages of differentiation: (1) undifferentiated ESC/iPSC, (2) neural stem cells, (3) dopaminergic precursors, and (4) dopaminergic neurons. This data set provides comprehensive information about genes expressed at each stage of differentiation. Our data indicate that distinct pathways are activated during neural and dopaminergic neuronal differentiation. For example, WNT, sonic hedgehog (SHH), and cAMP signaling pathways were found over-represented in dopaminergic populations by gene enrichment and pathway analysis, and their role was confirmed by perturbation analyses using RNAi (small interfering RNA of SHH and WNT) or small molecule [dibutyryl cyclic AMP (dcAMP)]. In summary, whole genome profiling of dopaminergic differentiation enables systematic analysis of genes/pathways, networks, and cellular/molecular processes that control cell fate decisions. Such analyses will serve as the foundation for better understanding of dopaminergic development, function, and development of future stem cell-based therapies.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Transcriptoma , Sitios de Unión , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Genes Mitocondriales , Genoma Humano , Humanos , Células-Madre Neurales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/fisiología
10.
J Cell Biochem ; 113(12): 3610-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22807388

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder. The motor symptoms of PD are caused by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta of mesencephalon. The causes for death of DA neurons are not well understood, but the strongest risk factor is increasing age. There is no cure currently available for PD, and treatment is limited to management of PD symptoms in patients. Primary DA neurons are virtually unobtainable from living patients and animal studies have proven inadequate for studying the mechanism of PD development. Pluripotent stem cells (PSC) are primary self-renewing cells capable of differentiating into all cell types of an organism, including DA neurons. PSCs represent an abundant source of cells that can be genetically modified or isolated from patients with complex diseases, enabling the production of large quantities of DA neurons for disease modeling, drug screening, and gene function studies. Furthermore, since PD arises as a result of deterioration of DA neurons in a specific brain region, it has been suggested that a relatively small number of cells could restore normal function. PSCs could provide a source of DA neurons for cell replacement therapy. In this Prospects article, we focus on the development and in vitro derivation of DA neurons from PSCs, as well as current applications of the technological advances, with the emphasis on future directions and efforts in the field.


Asunto(s)
Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Neurogénesis , Animales , Células Cultivadas , Técnicas de Cocultivo/métodos , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Mesencéfalo/citología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Medicina Regenerativa , Trasplante de Células Madre/métodos , Transcripción Genética
11.
PLoS One ; 6(6): e20914, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21698063

RESUMEN

BACKGROUND: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. METHODOLOGY/PRINCIPAL FINDINGS: We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. CONCLUSIONS/FINDINGS: Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH).


Asunto(s)
Diferenciación Celular , Metabolismo Energético , Células Madre Pluripotentes/metabolismo , Western Blotting , Línea Celular , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Células Madre Pluripotentes/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción Genética
12.
Results Probl Cell Differ ; 53: 415-58, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21630155

RESUMEN

Pluripotent stem cells have the capability to undergo unlimited self-renewal and differentiation into all somatic cell types. They have acquired specific adjustments in the cell cycle structure that allow them to rapidly proliferate, including cell cycle independent expression of cell cycle regulators and lax G(1) to S phase transition. However, due to the developmental role of embryonic stem cells (ES) it is essential to maintain genomic integrity and prevent acquisition of mutations that would be transmitted to multiple cell lineages. Several modifications in DNA damage response of ES cells accommodate dynamic cycling and preservation of genetic information. The absence of a G(1)/S cell cycle arrest promotes apoptotic response of damaged cells before DNA changes can be fixed in the form of mutation during the S phase, while G(2)/M cell cycle arrest allows repair of damaged DNA following replication. Furthermore, ES cells express higher level of DNA repair proteins, and exhibit enhanced repair of multiple types of DNA damage. Similarly to ES cells, induced pluripotent stem (iPS) cells are poised to proliferate and exhibit lack of G(1)/S cell cycle arrest, extreme sensitivity to DNA damage, and high level of expression of DNA repair genes. The fundamental mechanisms by which the cell cycle regulates genomic integrity in ES cells and iPS cells are similar, though not identical.


Asunto(s)
Adaptación Fisiológica/fisiología , Ciclo Celular/fisiología , Células Madre Embrionarias/fisiología , Inestabilidad Genómica/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Adaptación Fisiológica/genética , Animales , Ciclo Celular/genética , Inestabilidad Genómica/genética , Humanos
13.
PLoS One ; 5(10): e13410, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20976220

RESUMEN

BACKGROUND: Induced pluripotent stem (iPS) cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB), and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2) phase of the cell cycle, displaying a lack of the G(1)/S cell cycle arrest similar to human embryonic stem (ES) cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts. CONCLUSIONS/SIGNIFICANCE: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1)/S cell cycle arrest, were observed in stem cells generated by induced pluripotency.


Asunto(s)
Daño del ADN , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Línea Celular , Reparación del ADN , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Microscopía Confocal , Fosforilación , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa
14.
Stem Cells ; 27(8): 1822-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19544417

RESUMEN

Human embryonic stem (ES) cells are highly sensitive to environmental insults including DNA damaging agents, responding with high levels of apoptosis. To understand the response of human ES cells to DNA damage, we investigated the function of the ataxia telangiectasia mutated (ATM) DNA damage signaling pathway in response to gamma-irradiation. Here, we demonstrate for the first time in human ES cells that ATM kinase is phosphorylated and properly localized to the sites of DNA double-strand breaks within 15 minutes of irradiation. Activation of ATM kinase resulted in phosphorylation of its downstream targets: Chk2, p53, and Nbs1. In contrast to murine ES cells, Chk2 and p53 were localized to the nucleus of irradiated human ES cells. We further show that irradiation resulted in a temporary arrest of the cell cycle at the G(2), but not G(1), phase. Human ES cells resumed cycling approximately 16 hours after irradiation, but had a fourfold higher incidence of aberrant mitotic figures compared to nonirradiated cells. Finally, we demonstrate an essential role of ATM in establishing G(2) arrest since inhibition with the ATM-specific inhibitor KU55933 resulted in abolishment of G(2) arrest, evidenced by an increase in the number of cycling cells 2 hours after irradiation. In summary, these results indicate that human ES cells activate the DNA damage checkpoint, resulting in an ATM-dependent G(2) arrest. However, these cells re-enter the cell cycle with prominent mitotic spindle defects.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/efectos de la radiación , Fase G1/efectos de la radiación , Fase G2/efectos de la radiación , Células Madre Pluripotentes/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fase G1/genética , Fase G2/genética , Rayos gamma , Humanos , Inmunohistoquímica , Microscopía Confocal , Fosforilación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...