Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metallomics ; 10(7): 1003-1015, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29978878

RESUMEN

The present paper deals with investigation of the interaction between selected simple structure Au(iii) ([AuCl4]-, [AuCl2(dmso)2]+, [AuCl2(bipy)]+) and Pt(ii) ([PtCl2(dmso)2]) complexes with Na/K-ATPase as the target enzyme, using an experimental and theoretical approach. Reaction stoichiometries and binding constants for these enzyme/complex systems were determined, while kinetic measurements were used in order to reveal the type of inhibition. Based on the results obtained by quantum mechanical calculations (electrostatic surface potential (ESP), volume and surface of the complexes) the nature of the investigated complexes was characterized. By using the solvent accessible surface area (SASA) applied on specific inhibitory sites (ion channel and intracellular domains) the nature of these sites was described. Docking studies were used to determine the theoretical probability of the non-covalent metal binding site positions. Inhibition studies implied that all the investigated complexes decreased the activity of the enzyme while the kinetic analysis indicated an uncompetitive mode of inhibition for the selected complexes. Docking results suggested that the main inhibitory site of all these complexes is located in the ion translocation pathway on the extracellular side in the E2P enzyme conformation, similar to the case of cardiac glycosides, specific Na/K-ATPase inhibitors. Also, based on our knowledge, the hydrolyzed forms of [AuCl4]- and [PtCl2(dmso)2] complexes were investigated for the first time by theoretical calculations in this paper. Thereby, a new inhibitory site situated between the M2 and M4 helices was revealed. Binding in this site induces conformational changes in the enzyme domains and perturbs the E1-E2P conformational equilibrium, causing enzyme inhibition.


Asunto(s)
Complejos de Coordinación/metabolismo , Compuestos de Oro/metabolismo , Modelos Teóricos , Compuestos de Platino/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sitios de Unión , Complejos de Coordinación/química , Compuestos de Oro/química , Humanos , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Compuestos de Platino/química , Conformación Proteica , ATPasa Intercambiadora de Sodio-Potasio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA