Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Breath Res ; 18(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237170

RESUMEN

Disease detection and monitoring using volatile organic compounds (VOCs) is becoming increasingly popular. For a variety of (gastrointestinal) diseases the microbiome should be considered. As its output is to large extent volatile, faecal volatilomics carries great potential. One technical limitation is that current faecal headspace analysis requires specialized instrumentation which is costly and typically does not work in harmony with thermal desorption units often utilized in e.g. exhaled breath studies. This lack of harmonization hinders uptake of such analyses by the Volatilomics community. Therefore, this study optimized and compared two recently harmonized faecal headspace sampling platforms:High-capacity Sorptive extraction (HiSorb) probesand theMicrochamber thermal extractor (Microchamber). Statistical design of experiment was applied to find optimal sampling conditions by maximizing reproducibility, the number of VOCs detected, and between subject variation. To foster general applicability those factors were defined using semi-targeted as well as untargeted metabolic profiles. HiSorb probes were found to result in a faster sampling procedure, higher number of detected VOCs, and higher stability. The headspace collection using the Microchamber resulted in a lower number of detected VOCs, longer sampling times and decreased stability despite a smaller number of interfering VOCs and no background signals. Based on the observed profiles, recommendations are provided on pre-processing and study design when using either one of both platforms. Both can be used to perform faecal headspace collection, but altogether HiSorb is recommended.


Asunto(s)
Líquidos Corporales , Compuestos Orgánicos Volátiles , Humanos , Reproducibilidad de los Resultados , Pruebas Respiratorias/métodos , Heces/química , Compuestos Orgánicos Volátiles/análisis , Líquidos Corporales/química
2.
Mol Nutr Food Res ; 67(9): e2200574, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36808825

RESUMEN

SCOPE: Western type of diets are characterized by high animal protein intake and are associated with various chronic inflammatory diseases. With a higher protein consumption, excess undigested protein will reach the colon and be subsequently metabolized by gut microbiota. Depending on the type of protein, fermentation in the colon generates different metabolites with varying biological effects. This study aims to compare the impact of protein fermentation products from different sources on gut health. METHODS AND RESULTS: Three high protein diets (vital wheat gluten [VWG], lentil, or casein) are submitted to the in vitro model of colon. Fermentation of excess lentil protein for 72 h results in highest production of short-chain fatty acids and lowest production of branched-chain fatty acids. Exposure of Caco-2 monolayers or Caco-2 monolayers co-cultured with THP-1 macrophages to luminal extracts of fermented lentil protein results in less cytotoxicity of Caco-2 monolayers and less damage to barrier integrity, when compared to VWG and casein. Lowest induction of interleukin-6 is observed in THP-1 macrophages after treatment with lentil luminal extracts, which is identified to be regulated by aryl hydrocarbon receptor signaling. CONCLUSION: The findings indicate that protein sources affect the health effects of high protein diet in the gut.


Asunto(s)
Caseínas , Ácidos Grasos Volátiles , Animales , Humanos , Fermentación , Caseínas/farmacología , Caseínas/metabolismo , Células CACO-2 , Ácidos Grasos Volátiles/metabolismo , Colon/metabolismo , Glútenes/farmacología , Heces
3.
Metabolites ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248826

RESUMEN

Up to 5% of inflammatory bowel disease patients may at some point develop primary sclerosing cholangitis (PSC). PSC is a rare liver disease that ultimately results in liver damage, cirrhosis and liver failure. It typically remains subclinical until irreversible damage has been inflicted. Hence, it is crucial to screen IBD patients for PSC, but its early detection is challenging, and the disease's etiology is not well understood. This current study aimed at the early detection of PSC in an IBD population using Volatile Organic Compounds in fecal headspace and exhaled breath. To this aim, fecal material and exhaled breath were collected from 73 patients (n = 16 PSC/IBD; n = 8 PSC; n = 49 IBD), and their volatile profile were analyzed using Gas Chromatography-Mass Spectrometry. Using the most discriminatory features, PSC detection resulted in areas under the ROC curve (AUCs) of 0.83 and 0.84 based on fecal headspace and exhaled breath, respectively. Upon data fusion, the predictive performance increased to AUC 0.92. The observed features in the fecal headspace relate to detrimental microbial dysbiosis and exogenous exposure. Future research should aim for the early detection of PSC in a prospective study design.

4.
ERJ Open Res ; 8(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35350275

RESUMEN

Rationale: The concentration of octane and acetaldehyde in exhaled breath has good diagnostic accuracy for acute respiratory distress syndrome (ARDS). We aimed to determine whether breath octane and acetaldehyde are able to distinguish the presence and absence of ARDS in critically ill patients suspected to have ventilator-associated pneumonia (VAP). Methods: This is a secondary analysis of a prospective observational study into exhaled breath analysis using gas chromatography-time-of-flight mass spectrometry. Difference in the relative abundance of octane and acetaldehyde in exhaled breath was compared between patients with and without ARDS using the Mann-Whitney U-test and the association was quantified using logistic regression. The discriminative accuracy of octane and acetaldehyde, alone or in combination, was calculated using the area under the receiver operating characteristic curve (AUROCC). Results: We included 98 patients, of whom 32 had ARDS and 66 did not. The area under the acetaldehyde peak was higher in patients with ARDS (p=0.03), and associated with the presence of ARDS (OR 1.06 per 100 000 count change, 95% CI 1.02-1.13 per 100 000 count change; p=0.01). A combined model with octane and acetaldehyde showed a high specificity and low sensitivity (90% and 40.6%, respectively), with a low accuracy (AUROCC 0.65, 95% CI 0.53-0.78). Conclusion: Patients suspected to have VAP with ARDS had a higher acetaldehyde concentration in exhaled breath than patients suspected to have VAP without ARDS. However, in this patient population, discrimination of these breath biomarkers for ARDS was poor, indicating the difficulty of translating diagnostic tests between clinical settings.

5.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825576

RESUMEN

Most studies on the antioxidant activity of flavonoids like Quercetin (Q) do not consider that it comprises a series of sequential reactions. Therefore, the present study examines how the redox energy flows through the molecule during Q's antioxidant activity, by combining experimental data with quantum calculations. It appears that several main pathways are possible. Pivotal are subsequently: deprotonation of the 7-OH group; intramolecular hydrogen transfer from the 3-OH group to the 4-Oxygen atom; electron transfer leading to two conformers of the Q radical; deprotonation of the OH groups in the B-ring, leading to three different deprotonated Q radicals; and finally electron transfer of each deprotonated Q radical to form the corresponding quercetin quinones. The quinone in which the carbonyl groups are the most separated has the lowest energy content, and is the most abundant quinone. The pathways are also intertwined. The calculations show that Q can pick up redox energy at various sites of the molecule which explains Q's ability to scavenge all sorts of reactive oxidizing species. In the described pathways, Q picked up, e.g., two hydroxyl radicals, which can be processed and softened by forming quercetin quinone.


Asunto(s)
Antioxidantes/química , Quercetina/química , Transporte de Electrón , Depuradores de Radicales Libres/química , Hidrógeno/química , Radical Hidroxilo/química , Estructura Molecular , Oxidación-Reducción , Protones , Quinonas/química , Agua
6.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188142

RESUMEN

In the antioxidant activity of quercetin (Q), stabilization of the energy in the quercetin radical (Q•) by delocalization of the unpaired electron (UE) in Q• is pivotal. The aim of this study is to further examine the delocalization of the UE in Q•, and to elucidate the importance of the functional groups of Q for the stabilization of the UE by combining experimentally obtained spin resonance spectroscopy (ESR) measurements with theoretical density functional theory (DFT) calculations. The ESR spectrum and DFT calculation of Q• and structurally related radicals both suggest that the UE of Q• is mostly delocalized in the B ring and partly on the AC ring. The negatively charged oxygen groups in the B ring (3' and 4') of Q• have an electron-donating effect that attract and stabilize the UE in the B ring. Radicals structurally related to Q• indicate that the negatively charged oxygen at 4' has more of an effect on concentrating the UE in ring B than the negatively charged oxygen at 3'. The DFT calculation showed that an OH group at the 3-position of the AC ring is essential for concentrating the radical on the C2-C3 double bond. All these effects help to explain how the high energy of the UE is captured and a stable Q• is generated, which is pivotal in the antioxidant activity of Q.


Asunto(s)
Teoría Funcional de la Densidad , Electrones , Quercetina/química , Vibración , Antioxidantes/química , Flavonoides/química , Radicales Libres , Hidroquinonas , Quempferoles/química , Modelos Químicos , Estructura Molecular , Oxígeno
7.
Free Radic Biol Med ; 124: 31-39, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29859347

RESUMEN

As one of the important dietary antioxidants, (-)-epicatechin is a potent reactive oxygen species (ROS) scavenger involved in the redox modulation of the cell. When scavenging ROS, (-)-epicatechin will donate two electrons and become (-)-epicatechin quinone, and thus take over part of the oxidative potential of the ROS. The aim of the study is to determine where this chemical reactivity resides in (-)-epicatechin quinone. When this reactivity is spread out over the entire molecule, i.e. over the AC-ring and B-ring, this will lead to partial epimerization of (-)-epicatechin quinone to (-)-catechin quinone. In our experiments, (-)-epicatechin quinone was generated with tyrosinase. The formation of (-)-epicatechin quinone was confirmed by trapping with GSH, and identification of (-)-epicatechin-GSH adducts. Moreover, (-)-epicatechin quinone could be detected using Q-TOF/MS despite its short half-life. To detect the epimerization, the ability of ascorbate to reduce the unstable flavonoid quinones into the corresponding stable flavonoids was used. The results showed that the reduction of the formed (-)-epicatechin quinone by ascorbate did not result in the formation of an appreciable amount of (-)-catechin. Therefore it can be concluded that the chemical reactivity of (-)-epicatechin quinone mainly resides in its B-ring. This could be corroborated by quantum chemical calculations. Understanding the stabilization of the (-)-epicatechin quinone will help to differentiate between flavonoids and to select the appropriate compound for a specific disorder.


Asunto(s)
Antioxidantes/química , Catequina/química , Quinonas/química , Estructura Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...