Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Sci Rep ; 14(1): 12811, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834738

RESUMEN

Macrophages provide a crucial environment for Salmonella enterica serovar Typhi (S. Typhi) to multiply during typhoid fever, yet our understanding of how human macrophages and S. Typhi interact remains limited. In this study, we delve into the dynamics of S. Typhi replication within human macrophages and the resulting heterogeneous transcriptomic responses of macrophages during infection. Our study reveals key factors that influence macrophage diversity, uncovering distinct immune and metabolic pathways associated with different stages of S. Typhi intracellular replication in macrophages. Of note, we found that macrophages harboring replicating S. Typhi are skewed towards an M1 pro-inflammatory state, whereas macrophages containing non-replicating S. Typhi exhibit neither a distinct M1 pro-inflammatory nor M2 anti-inflammatory state. Additionally, macrophages with replicating S. Typhi were characterized by the increased expression of genes associated with STAT3 phosphorylation and the activation of the STAT3 transcription factor. Our results shed light on transcriptomic pathways involved in the susceptibility of human macrophages to intracellular S. Typhi replication, thereby providing crucial insight into host phenotypes that restrict and support S. Typhi infection.


Asunto(s)
Macrófagos , Factor de Transcripción STAT3 , Salmonella typhi , Fiebre Tifoidea , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Salmonella typhi/genética , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/inmunología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Perfilación de la Expresión Génica , Fenotipo , Transcriptoma , Fosforilación
2.
Nat Genet ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831009

RESUMEN

Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.

3.
Lab Anim (NY) ; 53(6): 148-159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806681

RESUMEN

Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic-pituitary-adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways.


Asunto(s)
Motilidad Gastrointestinal , Ratones Endogámicos C57BL , Estrés Fisiológico , Animales , Ratones , Masculino , Temperatura , Sistema Hipotálamo-Hipofisario/fisiología , Microbioma Gastrointestinal , Sistema Hipófiso-Suprarrenal/fisiología , Hormona Liberadora de Corticotropina/metabolismo
5.
Curr Opin Immunol ; 84: 102367, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437470

RESUMEN

Macrophages function as tissue-immune sentinels and mediate key antimicrobial responses against bacterial pathogens. Yet, they can also act as a cellular niche for intracellular bacteria, such as Salmonella enterica, to persist in infected tissues. Macrophages exhibit heterogeneous activation or polarization, states that are linked to differential antibacterial responses and bacteria permissiveness. Remarkably, recent studies demonstrate that Salmonella and other intracellular bacteria inject virulence effectors into the cellular cytoplasm to skew the macrophage polarization state and reprogram these immune cells into a permissive niche. Here, we review mechanisms of macrophage reprogramming by Salmonella and highlight manipulation of macrophage polarization as a shared bacterial pathogenesis strategy. In addition, we discuss how the interplay of bacterial effector mechanisms, microenvironmental signals, and ontogeny may shape macrophage cell states and functions. Finally, we propose ideas of how further research will advance our understanding of macrophage functional diversity and immunobiology.


Asunto(s)
Bacterias , Macrófagos , Humanos , Virulencia
6.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333307

RESUMEN

Salmonella enterica serovar Typhi ( S. Typhi) is a human-restricted pathogen that replicates in macrophages. In this study, we investigated the roles of the S. Typhi Type 3 secretion systems (T3SSs) encoded on Salmonella Pathogenicity Islands (SPI) -1 (T3SS-1) and -2 (T3SS-2) during human macrophage infection. We found that mutants of S . Typhi deficient for both T3SSs were defective for intramacrophage replication as measured by flow cytometry, viable bacterial counts, and live time-lapse microscopy. T3SS-secreted proteins PipB2 and SifA contributed to S. Typhi replication and were translocated into the cytosol of human macrophages through both T3SS-1 and -2, demonstrating functional redundancy for these secretion systems. Importantly, an S . Typhi mutant strain that is deficient for both T3SS-1 and -2 was severely attenuated in the ability to colonize systemic tissues in a humanized mouse model of typhoid fever. Overall, this study establishes a critical role for S. Typhi T3SSs during its replication within human macrophages and during systemic infection of humanized mice. Importance: Salmonella enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Understanding the key virulence mechanisms that facilitate S. Typhi replication in human phagocytes will enable rational vaccine and antibiotic development to limit spread of this pathogen. While S. Typhimurium replication in murine models has been studied extensively, there is limited information available about S. Typhi replication in human macrophages, some of which directly conflicts with findings from S. Typhimurium murine models. This study establishes that both of S. Typhi's two Type 3 Secretion Systems (T3SS-1 and -2) contribute to intramacrophage replication and virulence.

7.
mBio ; 14(4): e0113723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37341487

RESUMEN

Salmonella enterica serovar Typhi (S. Typhi) is a human-restricted pathogen that replicates in macrophages. In this study, we investigated the roles of the S. Typhi type 3 secretion systems (T3SSs) encoded on Salmonella pathogenicity islands (SPI)-1 (T3SS-1) and SPI-2 (T3SS-2) during human macrophage infection. We found that mutants of S. Typhi deficient for both T3SSs were defective for intramacrophage replication as measured by flow cytometry, viable bacterial counts, and live time-lapse microscopy. T3SS-secreted proteins PipB2 and SifA contributed to S. Typhi replication and were translocated into the cytosol of human macrophages through both T3SS-1 and T3SS-2, demonstrating functional redundancy for these secretion systems. Importantly, an S. Typhi mutant strain that is deficient for both T3SS-1 and T3SS-2 was severely attenuated in the ability to colonize systemic tissues in a humanized mouse model of typhoid fever. Overall, this study establishes a critical role for S. Typhi T3SSs during its replication within human macrophages and during systemic infection of humanized mice. IMPORTANCE Salmonella enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Understanding the key virulence mechanisms that facilitate S. Typhi replication in human phagocytes will enable rational vaccine and antibiotic development to limit the spread of this pathogen. While S. Typhimurium replication in murine models has been studied extensively, there is limited information available about S. Typhi replication in human macrophages, some of which directly conflict with findings from S. Typhimurium murine models. This study establishes that both of S. Typhi's two type 3 secretion systems (T3SS-1 and T3SS-2) contribute to intramacrophage replication and virulence.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Humanos , Animales , Ratones , Salmonella typhi/genética , Fiebre Tifoidea/microbiología , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Salmonella/metabolismo , Macrófagos/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Cell Host Microbe ; 31(3): 405-417.e5, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812913

RESUMEN

The molecular understanding of host-pathogen interactions in the gastrointestinal (GI) tract of superspreader hosts is incomplete. In a mouse model of chronic, asymptomatic Salmonella enterica serovar Typhimurium (S. Tm) infection, we performed untargeted metabolomics on the feces of mice and found that superspreader hosts possess distinct metabolic signatures compared with non-superspreaders, including differential levels of L-arabinose. RNA-seq on S. Tm from superspreader fecal samples showed increased expression of the L-arabinose catabolism pathway in vivo. By combining bacterial genetics and diet manipulation, we demonstrate that diet-derived L-arabinose provides S. Tm a competitive advantage in the GI tract, and expansion of S. Tm in the GI tract requires an alpha-N-arabinofuranosidase that liberates L-arabinose from dietary polysaccharides. Ultimately, our work shows that pathogen-liberated L-arabinose from the diet provides a competitive advantage to S. Tm in vivo. These findings propose L-arabinose as a critical driver of S. Tm expansion in the GI tracts of superspreader hosts.


Asunto(s)
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Arabinosa/metabolismo , Salmonella enterica/metabolismo , Polisacáridos/metabolismo , Serogrupo
9.
Curr Opin Microbiol ; 72: 102262, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36640585

RESUMEN

Salmonella enterica is one of the most widespread bacterial pathogens found worldwide, resulting in approximately 100 million infections and over 200 000 deaths per year. Salmonella isolates, termed 'serovars', can largely be classified as either nontyphoidal or typhoidal Salmonella, which differ in regard to disease manifestation and host tropism. Nontyphoidal Salmonella causes gastroenteritis in many hosts, while typhoidal Salmonella is human-restricted and causes typhoid fever, a systemic disease with a mortality rate of up to 30% without treatment. There has been considerable interest in understanding how different Salmonella serovars cause different diseases, but the molecular details that underlie these infections have not yet been fully characterized, especially in the case of typhoidal Salmonella. In this review, we highlight the current state of research into understanding the pathogenesis of both nontyphoidal and typhoidal Salmonella, with a specific interest in serovar-specific traits that allow human-adapted strains of Salmonella to cause enteric fever. Overall, a more detailed molecular understanding of how different Salmonella isolates infect humans will provide critical insights into how we can eradicate these dangerous enteric pathogens.


Asunto(s)
Infecciones por Salmonella , Salmonella enterica , Fiebre Tifoidea , Humanos , Fiebre Tifoidea/microbiología , Salmonella , Serogrupo
10.
Sci Adv ; 9(1): eadd4333, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608122

RESUMEN

Macrophages mediate key antimicrobial responses against intracellular bacterial pathogens, such as Salmonella enterica. Yet, they can also act as a permissive niche for these pathogens to persist in infected tissues within granulomas, which are immunological structures composed of macrophages and other immune cells. We apply single-cell transcriptomics to investigate macrophage functional diversity during persistent S. enterica serovar Typhimurium (STm) infection in mice. We identify determinants of macrophage heterogeneity in infected spleens and describe populations of distinct phenotypes, functional programming, and spatial localization. Using an STm mutant with impaired ability to polarize macrophage phenotypes, we find that angiotensin-converting enzyme (ACE) defines a granuloma macrophage population that is nonpermissive for intracellular bacteria, and their abundance anticorrelates with tissue bacterial burden. Disruption of pathogen control by neutralizing TNF is linked to preferential depletion of ACE+ macrophages in infected tissues. Thus, ACE+ macrophages have limited capacity to serve as cellular niche for intracellular bacteria to establish persistent infection.


Asunto(s)
Infecciones por Salmonella , Salmonella typhimurium , Animales , Ratones , Salmonella typhimurium/genética , Infección Persistente , Infecciones por Salmonella/genética , Macrófagos/microbiología , Granuloma
11.
Crit Care Med ; 50(6): e504-e515, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35067534

RESUMEN

OBJECTIVES: Recent publications have shown that mitochondrial dynamics can govern the quality and quantity of extracellular mitochondria subsequently impacting immune phenotypes. This study aims to determine if pathologic mitochondrial fission mediated by Drp1/Fis1 interaction impacts extracellular mitochondrial content and macrophage function in sepsis-induced immunoparalysis. DESIGN: Laboratory investigation. SETTING: University laboratory. SUBJECTS: C57BL/6 and BALB/C mice. INTERVENTIONS: Using in vitro and murine models of endotoxin tolerance (ET), we evaluated changes in Drp1/Fis1-dependent pathologic fission and simultaneously measured the quantity and quality of extracellular mitochondria. Next, by priming mouse macrophages with isolated healthy mitochondria (MC) and damaged mitochondria, we determined if damaged extracellular mitochondria are capable of inducing tolerance to subsequent endotoxin challenge. Finally, we determined if inhibition of Drp1/Fis1-mediated pathologic fission abrogates release of damaged extracellular mitochondria and improves macrophage response to subsequent endotoxin challenge. MEASUREMENTS AND MAIN RESULTS: When compared with naïve macrophages (NMs), endotoxin-tolerant macrophages (ETM) demonstrated Drp1/Fis1-dependent mitochondrial dysfunction and higher levels of damaged extracellular mitochondria (Mitotracker-Green + events/50 µL: ETM = 2.42 × 106 ± 4,391 vs NM = 5.69 × 105 ± 2,478; p < 0.001). Exposure of NMs to damaged extracellular mitochondria (MH) induced cross-tolerance to subsequent endotoxin challenge, whereas MC had minimal effect (tumor necrosis factor [TNF]-α [pg/mL]: NM = 668 ± 3, NM + MH = 221 ± 15, and NM + Mc = 881 ± 15; p < 0.0001). Inhibiting Drp1/Fis1-dependent mitochondrial fission using heptapeptide (P110), a selective inhibitor of Drp1/Fis1 interaction, improved extracellular mitochondrial function (extracellular mitochondrial membrane potential, JC-1 [R/G] ETM = 7 ± 0.5 vs ETM + P110 = 19 ± 2.0; p < 0.001) and subsequently improved immune response in ETMs (TNF-α [pg/mL]; ETM = 149 ± 1 vs ETM + P110 = 1,150 ± 4; p < 0.0001). Similarly, P110-treated endotoxin tolerant mice had lower amounts of damaged extracellular mitochondria in plasma (represented by higher extracellular mitochondrial membrane potential, TMRM/MT-G: endotoxin tolerant [ET] = 0.04 ± 0.02 vs ET + P110 = 0.21 ± 0.02; p = 0.03) and improved immune response to subsequent endotoxin treatment as well as cecal ligation and puncture. CONCLUSIONS: Inhibition of Drp1/Fis1-dependent mitochondrial fragmentation improved macrophage function and immune response in both in vitro and in vivo models of ET. This benefit is mediated, at least in part, by decreasing the release of damaged extracellular mitochondria, which contributes to endotoxin cross-tolerance. Altogether, these data suggest that alterations in mitochondrial dynamics may play an important role in sepsis-induced immunoparalysis.


Asunto(s)
Dinaminas/metabolismo , Sepsis , Animales , Dinaminas/genética , Dinaminas/farmacología , Tolerancia a Endotoxinas , Endotoxinas , Humanos , Macrófagos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales , Sepsis/patología
12.
Nat Protoc ; 16(11): 5171-5192, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663962

RESUMEN

Human epithelial organoids-3D spheroids derived from adult tissue stem cells-enable investigation of epithelial physiology and disease and host interactions with microorganisms, viruses and bioactive molecules. One challenge in using organoids is the difficulty in accessing the apical, or luminal, surface of the epithelium, which is enclosed within the organoid interior. This protocol describes a method we previously developed to control human and mouse organoid polarity in suspension culture such that the apical surface faces outward to the medium (apical-out organoids). Our protocol establishes apical-out polarity rapidly (24-48 h), preserves epithelial integrity, maintains secretory and absorptive functions and allows regulation of differentiation. Here, we provide a detailed description of the organoid polarity reversal method, compatible characterization assays and an example of an application of the technology-specifically the impact of host-microbe interactions on epithelial function. Control of organoid polarity expands the possibilities of organoid use in gastrointestinal and respiratory health and disease research.


Asunto(s)
Diferenciación Celular , Tracto Gastrointestinal , Organoides , Animales , Técnicas de Cultivo de Célula , Células Epiteliales/citología , Ratones
13.
PLoS Pathog ; 17(3): e1009345, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651854

RESUMEN

Sensing and responding to environmental signals is critical for bacterial pathogens to successfully infect and persist within hosts. Many bacterial pathogens sense temperature as an indication they have entered a new host and must alter their virulence factor expression to evade immune detection. Using secondary structure prediction, we identified an RNA thermosensor (RNAT) in the 5' untranslated region (UTR) of tviA encoded by the typhoid fever-causing bacterium Salmonella enterica serovar Typhi (S. Typhi). Importantly, tviA is a transcriptional regulator of the critical virulence factors Vi capsule, flagellin, and type III secretion system-1 expression. By introducing point mutations to alter the mRNA secondary structure, we demonstrate that the 5' UTR of tviA contains a functional RNAT using in vitro expression, structure probing, and ribosome binding methods. Mutational inhibition of the RNAT in S. Typhi causes aberrant virulence factor expression, leading to enhanced innate immune responses during infection. In conclusion, we show that S. Typhi regulates virulence factor expression through an RNAT in the 5' UTR of tviA. Our findings demonstrate that limiting inflammation through RNAT-dependent regulation in response to host body temperature is important for S. Typhi's "stealthy" pathogenesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/inmunología , Interacciones Microbiota-Huesped/inmunología , Salmonella typhi/genética , Temperatura , Fiebre Tifoidea/microbiología , Proteínas Bacterianas/metabolismo , Humanos , Evasión Inmune/inmunología , Salmonella typhi/inmunología , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
14.
iScience ; 23(10): 101612, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33089101

RESUMEN

In mammalian cells, inflammatory caspases detect Gram-negative bacterial invasion by binding lipopolysaccharides (LPS). Murine caspase-11 binds cytosolic LPS, stimulates pyroptotic cell death, and drives sepsis pathogenesis. Extracellular priming factors enhance caspase-11-dependent pyroptosis. Herein we compare priming agents and demonstrate that IFNγ priming elicits the most rapid and amplified macrophage response to cytosolic LPS. Previous studies indicate that IFN-induced expression of caspase-11 and guanylate binding proteins (GBPs) are causal events explaining the effects of priming on cytosolic LPS sensing. We demonstrate that these events cannot fully account for the increased response triggered by IFNγ treatment. Indeed, IFNγ priming elicits higher pyroptosis levels in response to cytosolic LPS when macrophages stably express caspase-11. In macrophages lacking GBPs encoded on chromosome 3, IFNγ priming enhanced pyroptosis in response to cytosolic LPS as compared with other priming agents. These results suggest an unknown regulator of caspase-11-dependent pyroptosis exists, whose activity is upregulated by IFNγ.

15.
PLoS Pathog ; 16(8): e1008763, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32834002

RESUMEN

The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Colitis/patología , Variación Genética , Macrófagos/inmunología , Salmonelosis Animal/patología , Salmonella typhimurium/inmunología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Linaje de la Célula , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Replicación Viral
16.
mBio ; 11(3)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576678

RESUMEN

It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.


Asunto(s)
Betacoronavirus/inmunología , Antígeno CD47/metabolismo , Inmunomodulación/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Células A549 , Inmunidad Adaptativa/inmunología , Animales , Antígeno CD47/genética , Línea Celular Tumoral , Citocinas/inmunología , Femenino , Humanos , Inmunidad Innata/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/inmunología , SARS-CoV-2 , Regulación hacia Arriba/inmunología
17.
Gastroenterology ; 159(1): 214-226.e1, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32247021

RESUMEN

BACKGROUND & AIMS: Intestinal microfold (M) cells are a unique subset of intestinal epithelial cells in the Peyer's patches that regulate mucosal immunity, serving as portals for sampling and uptake of luminal antigens. The inability to efficiently develop human M cells in cell culture has impeded studies of the intestinal immune system. We aimed to identify signaling pathways required for differentiation of human M cells and establish a robust culture system using human ileum enteroids. METHODS: We analyzed transcriptome data from mouse Peyer's patches to identify cell populations in close proximity to M cells. We used the human enteroid system to determine which cytokines were required to induce M-cell differentiation. We performed transcriptome, immunofluorescence, scanning electron microscope, and transcytosis experiments to validate the development of phenotypic and functional human M cells. RESULTS: A combination of retinoic acid and lymphotoxin induced differentiation of glycoprotein 2-positive human M cells, which lack apical microvilli structure. Upregulated expression of innate immune-related genes within M cells correlated with a lack of viral antigens after rotavirus infection. Human M cells, developed in the enteroid system, internalized and transported enteric viruses, such as rotavirus and reovirus, across the intestinal epithelium barrier in the enteroids. CONCLUSIONS: We identified signaling pathways required for differentiation of intestinal M cells, and used this information to create a robust culture method to develop human M cells with capacity for internalization and transport of viruses. Studies of this model might increase our understanding of antigen presentation and the systemic entry of enteric pathogens in the human intestine.


Asunto(s)
Diferenciación Celular/inmunología , Linfotoxina-alfa/metabolismo , Ganglios Linfáticos Agregados/inmunología , Transducción de Señal/inmunología , Tretinoina/metabolismo , Animales , Presentación de Antígeno/inmunología , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Humanos , Íleon/citología , Íleon/inmunología , Inmunidad Mucosa , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Ratones , FN-kappa B/metabolismo , Organoides , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/metabolismo , Cultivo Primario de Células , Proteínas Recombinantes/metabolismo
19.
QRB Discov ; 1: e3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37528962

RESUMEN

Disinfectants are important for arresting the spread of pathogens in the environment. Frequently used disinfectants are often incompatible with certain surfaces, expensive and can produce hazardous by-products. We report that micron-sized water droplets can act as an effective disinfectant, which were formed by spraying pure bulk water with coaxial nebulizing airflow. Spraying for 20 min onto Escherichia coli and Salmonella typhimurium on stainless-steel discs caused inactivation of over 98% of the bacteria. Control experiments resulted in less than 10% inactivation (water stream only and gas only) and 55% inactivation with 3% hydrogen peroxide. Experiments have shown that cell death results from cell wall destruction. We suggest that the combined action of reactive oxygen species present in water droplets (but not in bulk water) along with the droplet surface charge is responsible for the observed bactericidal activity.

20.
Cell Host Microbe ; 27(1): 54-67.e5, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31883922

RESUMEN

Many intracellular bacteria can establish chronic infection and persist in tissues within granulomas composed of macrophages. Granuloma macrophages exhibit heterogeneous polarization states, or phenotypes, that may be functionally distinct. Here, we elucidate a host-pathogen interaction that controls granuloma macrophage polarization and long-term pathogen persistence during Salmonella Typhimurium (STm) infection. We show that STm persists within splenic granulomas that are densely populated by CD11b+CD11c+Ly6C+ macrophages. STm preferentially persists in granuloma macrophages reprogrammed to an M2 state, in part through the activity of the effector SteE, which contributes to the establishment of persistent infection. We demonstrate that tumor necrosis factor (TNF) signaling limits M2 granuloma macrophage polarization, thereby restricting STm persistence. TNF neutralization shifts granuloma macrophages toward an M2 state and increases bacterial persistence, and these effects are partially dependent on SteE activity. Thus, manipulating granuloma macrophage polarization represents a strategy for intracellular bacteria to overcome host restriction during persistent infection.


Asunto(s)
Granuloma/inmunología , Interacciones Huésped-Patógeno/inmunología , Activación de Macrófagos/inmunología , Infecciones por Salmonella/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Granuloma/microbiología , Humanos , Interleucina-4/metabolismo , Macrófagos/microbiología , Ratones , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Bazo/citología , Bazo/microbiología , Bazo/patología , Transactivadores/metabolismo , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...