Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 21(10): 3712-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25969925

RESUMEN

Quantifying landscape-scale methane (CH4 ) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape-level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up-scaled using a high-resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km(2) area. For the full growing season (May to October), ~ 1.1-1.4 g CH4  m(-2) was released across the 100 km(2) area. This was based on up-scaled lawn emissions of 1.2-1.5 g CH4  m(-2) , vs. an up-scaled uptake of 0.07-0.15 g CH4  m(-2) by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general.


Asunto(s)
Bosques , Metano/metabolismo , Humedales , Regiones Árticas , Cambio Climático , Finlandia
2.
Nature ; 447(7146): 848-50, 2007 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-17568744

RESUMEN

Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).


Asunto(s)
Carbono/metabolismo , Clima , Ecosistema , Actividades Humanas , Árboles/metabolismo , Nitrógeno/metabolismo
3.
Plant Cell Environ ; 30(5): 600-16, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17407538

RESUMEN

We report diurnal variations in (13)C discrimination ((13)Delta) of Picea sitchensis (Bong.) Carr. branches measured in the field using a branch chamber technique. The observations were compared to predicted (13)Delta based on concurrent measurements of branch gas exchange. Observed (13)Delta values were described well by the classical model of (13)Delta including isotope effects during photorespiration, day respiration and CO(2) transfer through a series of resistances to the sites of carboxylation. A simplified linear of model (13)Delta did not capture the observed diurnal variability. At dawn and dusk, we measured very high (13)Delta values that were not predicted by either of the said models. Exploring the sensitivity of (13)Delta to possible respiratory isotope effects, we conclude that isotopic disequilibria between the gross fluxes of photosynthesis and day respiration can explain the high observed (13)Delta values during net photosynthetic gas exchange. Based on the classical model, a revised formulation incorporating an isotopically distinct substrate for day respiration was able to account well for the high observed dawn and dusk (13)Delta values.


Asunto(s)
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Picea/metabolismo , Agua/metabolismo , Respiración de la Célula/fisiología , Ritmo Circadiano/fisiología , Microclima , Hojas de la Planta/metabolismo
4.
Tree Physiol ; 26(7): 845-64, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16585031

RESUMEN

Gross canopy photosynthesis (P(g)) can be simulated with canopy models or retrieved from turbulent carbon dioxide (CO2) flux measurements above the forest canopy. We compare the two estimates and illustrate our findings with two case studies. We used the three-dimensional canopy model MAESTRA to simulate P(g) of two spruce forests differing in age and structure. Model parameter acquisition and model sensitivity to selected model parameters are described, and modeled results are compared with independent flux estimates. Despite higher photon fluxes at the site, an older German Norway spruce (Picea abies L. (Karst.)) canopy took up 25% less CO2 from the atmosphere than a young Scottish Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation. The average magnitudes of P(g) and the differences between the two canopies were satisfactorily represented by the model. The main reasons for the different uptake rates were a slightly smaller quantum yield and lower absorptance of the Norway spruce stand because of a more clumped canopy structure. The model did not represent the scatter in the turbulent CO2 flux densities, which was of the same order of magnitude as the non-photosynthetically-active-radiation-induced biophysical variability in the simulated P(g). Analysis of residuals identified only small systematic differences between the modeled flux estimates and turbulent flux measurements at high vapor pressure saturation deficits. The merits and limitations of comparative analysis for quality evaluation of both methods are discussed. From this analysis, we recommend use of both parameter sets and model structure as a basis for future applications and model development.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis , Picea/metabolismo , Clima , Simulación por Computador , Transporte de Electrón , Alemania , Modelos Biológicos , Picea/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Escocia , Árboles/anatomía & histología , Árboles/metabolismo
5.
Nature ; 433(7021): 57-9, 2005 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-15635408

RESUMEN

Our understanding of the relationship between the decomposition of soil organic matter (SOM) and soil temperature affects our predictions of the impact of climate change on soil-stored carbon. One current opinion is that the decomposition of soil labile carbon is sensitive to temperature variation whereas resistant components are insensitive. The resistant carbon or organic matter in mineral soil is then assumed to be unresponsive to global warming. But the global pattern and magnitude of the predicted future soil carbon stock will mainly rely on the temperature sensitivity of these resistant carbon pools. To investigate this sensitivity, we have incubated soils under changing temperature. Here we report that SOM decomposition or soil basal respiration rate was significantly affected by changes in SOM components associated with soil depth, sampling method and incubation time. We find, however, that the temperature sensitivity for SOM decomposition was not affected, suggesting that the temperature sensitivity for resistant organic matter pools does not differ significantly from that of labile pools, and that both types of SOM will therefore respond similarly to global warming.


Asunto(s)
Compuestos Orgánicos/metabolismo , Suelo/análisis , Temperatura , Biodegradación Ambiental , Carbono/metabolismo , Respiración de la Célula , Clima , Efecto Invernadero , Picea/fisiología , Poaceae/fisiología , Escocia , Microbiología del Suelo , Factores de Tiempo , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA