Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sports Med Open ; 10(1): 32, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573446

RESUMEN

BACKGROUND: The capacity to change attention from one area to another depending on the many environmental circumstances present is a crucial aspect of selective attention and is strictly correlated to reaction time. The cholinergic system of the basal forebrain is crucial for attentive abilities. Several inputs, particularly orexin neurons, whose cell bodies are found in the postero-lateral hypothalamus, can activate the cholinergic system. The aim of this study was to investigate if high frequencies rTMS at dorsolateral prefrontal cortex (DLPFC) in highly trained volleyball players can change Orexin-A levels, attention and reaction time. This study was a double-blinded (participant and evaluator) matched-pair experimental design. Twenty right-handed female volleyball players were recruited for the study (age 24.6 ± 2.7 years; height 177.0 ± 5.5 cm; body mass 67.5 ± 6.5 kg; BMI 21.5 ± 1.2). RESULTS: The main finding of this study was that 10 Hz rTMS to the DLPFC seems to increase Orexin-A salivary levels and the percentage of correct answers, while decreasing RT. After rTMS, the athletes show an increase in the percentage of correct answers immediately after the end of stimulation, and also after 15 and 30 min. Moreover, the athletes show decreases in reaction time after the end of stimulation and after 15 and 30 min to the end of stimulation, while no differences were found at the end of stimulation. Finally, the athletes show significant increases in Orexin-A salivary levels after stimulation with a peak after 30' of the end. CONCLUSION: The results of our study seem to indicate that there is a relationship between salivary Orexin-A levels and RT. These results could provide useful tools for modulating sports training; in fact, if confirmed, they could lead coaches to offer their athletes rTMS sessions appropriately integrated with training. In fact, alternating attention is a mental flexibility that enables people to change their point of focus and switch between tasks requiring various levels of cognition.

2.
Behav Sci (Basel) ; 14(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540561

RESUMEN

This study explores the interplay between executive functions and body weight, examining both the influence of biological factors, specifically sex, and methodological issues, such as the choice between Body Mass Index (BMI) and waist circumference (WC) as the primary anthropometric measure. A total of 386 participants (222 females, mean age = 45.98 years, SD = 17.70) were enrolled, from whom sociodemographic (sex, age, years of formal education) and anthropometric (BMI and WC) data were collected. Executive functions were evaluated using the Frontal Assessment Battery-15 (FAB15). The results showed the increased effectiveness of WC over BMI in examining the relationships between executive functions, sex differences, and body weight. In particular, this study revealed that there was a significant moderating effect of sex at comparable levels of executive functioning. Specifically, women with higher executive performance had lower WCs than their male counterparts, suggesting that executive function has a greater impact on WC in women than in men. Our findings highlight the importance of conducting more in-depth investigations of the complex relationship between cognitive deficits and weight gain, considering confounding variables of behavioral, psychobiological, and neurophysiological origin.

3.
J Pers Med ; 14(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38541034

RESUMEN

The developing domain of mental health in sports has gained much interest, acknowledging its pivotal role in athlete performance and well-being. The aim of this research is to provide a quantitative description concerning the levels of mental health, physical activity, cognitive fusion, cognitive flexibility, and coping strategies that characterize rugby athletes by using a data-driven approach. A total of 92 rugby athletes took part in this study and filled out a set of self-administered questionnaires. A correlational analysis showed that general well-being was positively associated with years spent playing rugby (r = 0.23) and coping mechanisms (r = 0.29). Athletes' well-being was also negatively correlated with cognitive inflexibility (r = -0.41) and cognitive fusion (r = -0.39). A k-means cluster analysis identified two unique groups: group 1, characterized by higher levels of psychological well-being, lower levels of physical activity, greater cognitive flexibility, improved coping techniques, and reduced cognitive fusion, and group 2, which exhibits opposite characteristics. The discrepancies observed in psychological characteristics such as coping strategies, cognitive fusion, and cognitive inflexibility highlight their potential impact on the general health of rugby players. To comprehend the complex interplay between psychological and physical elements in rugby athletes, long-term studies with larger samples are crucial.

4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473961

RESUMEN

Obesity, a complex disorder with rising global prevalence, is a chronic, inflammatory, and multifactorial disease and it is characterized by excessive adipose tissue accumulation and associated comorbidities. Adipose tissue (AT) is an extremely diverse organ. The composition, structure, and functionality of AT are significantly influenced by characteristics specific to everyone, in addition to the variability connected to various tissue types and its location-related heterogeneity. Recent investigation has shed light on the intricate relationship between bone marrow stem cells and obesity, revealing potential mechanisms that contribute to the development and consequences of this condition. Mesenchymal stem cells within the bone marrow, known for their multipotent differentiation capabilities, play a pivotal role in adipogenesis, the process of fat cell formation. In the context of obesity, alterations in the bone marrow microenvironment may influence the differentiation of mesenchymal stem cells towards adipocytes, impacting overall fat storage and metabolic balance. Moreover, bone marrow's role as a crucial component of the immune system adds another layer of complexity to the obesity-bone marrow interplay. This narrative review summarizes the current research findings on the connection between bone marrow stem cells and obesity, highlighting the multifaceted roles of bone marrow in adipogenesis and inflammation.


Asunto(s)
Adipocitos , Tejido Adiposo , Humanos , Tejido Adiposo/metabolismo , Diferenciación Celular , Adipocitos/metabolismo , Adipogénesis , Obesidad/metabolismo , Inflamación/metabolismo , Células de la Médula Ósea
5.
Nutrients ; 15(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068774

RESUMEN

Competition between athletes and an increase in sporting knowledge have greatly influenced training methods while increasing the number of them more and more. As a result, the number of athletes who have increased the number and intensity of their workouts while decreasing recovery times is rising. Positive overtraining could be considered a natural and fundamental process when the result is adaptation and improved performance; however, in the absence of adequate recovery, negative overtraining could occur, causing fatigue, maladaptation, and inertia. One of the earliest forms of fatigue is overreaching. It is considered to be an accumulation of training that leads to reduced sports performance, requiring days or weeks to recover. Overreaching, if followed by adequate recovery, can lead to an increase in athletic performance. Nonetheless, if overreaching becomes extreme, combined with additional stressors, it could lead to overtraining syndrome (OTS). OTS, caused by systemic inflammation, leads to central nervous system (CNS) effects, including depressed mood, further inflammation, central fatigue, and ultimately neurohormonal changes. There are therefore not only physiological, biochemical, and immunological but also psychological symptoms or markers that must be considered, independently or together, being intrinsically linked with overtraining, to fully understand OTS. However, to date, there are very few published studies that have analyzed how nutrition in its specific food aspects, if compromised during OTS, can be both etiology and consequence of the syndrome. To date, OTS has not yet been fully studied, and the topic needs further research. The purpose of this narrative review is therefore to study how a correct diet and nutrition can influence OTS in all its aspects, from prevention to treatment.


Asunto(s)
Rendimiento Atlético , Sindrome de Sobreentrenamiento , Humanos , Fatiga/prevención & control , Rendimiento Atlético/fisiología , Atletas , Inflamación/complicaciones
6.
Diabetes Ther ; 14(12): 2127-2142, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801224

RESUMEN

INTRODUCTION: Type 2 diabetes mellitus (T2DM) is a relevant risk factor for severe forms of COVID-19 (SARS coronavrus 2 [SARS-CoV-2] disease 2019), and calls for caution because of the high prevalence of T2DM worldwide and the high mortality rates observed in patients with T2DM who are infected with SARS-CoV-2. People with T2DM often take dipeptidyl peptidase-4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1ras), or sodium-glucose co-transporter-2 inhibitors (SGLT-2is), all of which have clear anti-inflammatory effects. The study aimed to compare (i) the severity and duration of hospital stay between patients with T2DM categorized by pre-hospitalization drug class utilization and (ii) the COVID-19-related death rates of those three groups. METHODS: We designed an observational, retrospective, multi-center, population-based study and extracted the hospital admission data from the health care records of 1916 T2DM patients over 18 years old who were previously on GLP-1ra, SGLT-2i, or DPP-4i monotherapy and were hospitalized for COVID-19 (diagnosis based on ICD.9/10 codes) between January 2020 and December 2021 in 14 hospitals throughout Italy. We analyzed general data, pre-admission treatment schedules, date of admission or transfer to the intensive care unit (ICU) (i.e., the index date; taken as a marker of increased COVID-19 disease severity), and death (if it had occurred). Statistics analyzed the impact of drug classes on in-hospital mortality using propensity score logistic regressions for (i) those admitted to intensive care and (ii) those not admitted to intensive care, with a random match procedure used to generate a 1:1 comparison without diabetes cohort replacement for each drug therapy group by applying the nearest neighbor method. After propensity score matching, we checked the balance achieved across selected variables if a balance was ever achieved. We then used propensity score matching between the three drug classes to assemble a sample in which each patient receiving an SGLT-2i was matched to one on a GLP-1ra, and each patient on a DPP-4i was matched to one on a GLP-1ra, adjusting for covariates. We finally used GLP-1ras as references in the logistic regression. RESULTS: The overall mortality rate (MR) of the patients was 14.29%. The MR in patients with COVID was 53.62%, and it was as high as 42.42% in the case of associated T2DM, regardless of any glucose-lowering therapy. In those on DPP-4is, there was excess mortality; in those treated with GLP-1ras and SGLT-2is, the death rate was significantly lower, i.e., almost a quarter of the overall mortality observed in COVID-19 patients with T2DM. Indeed, the odds ratio (OR) in the logistic regression resulted in an extremely high risk of in-hospital death in individuals previously treated with DPP-4is [incidence rate (IR) 4.02, 95% confidence interval (CI) 2.2-5.7) and only a slight, nonsignificantly higher risk in those previously treated with SGLT-2is (IR 1.42, 95% CI 0.6-2.1) compared to those on GLP-1ras. Moreover, the longer the stay, the higher the death rate, which ranged from 22.3% for ≤ 3-day stays to 40.3% for 4- to 14-day stays (p < 0.01 vs. the former) and 77.4% for over-14-day stays (p < 0.001 vs. both the others). DISCUSSION: Our data do not support a protective role of DPP-4is; indeed, this role has already been questioned due to previous observations. However, the data do show a strong protective effect of SGLT-2is and GLP-1ras. Beyond lowering circulating glucose levels, those two drug classes were found to exert marked anti-phlogistic effects: SGLT-2is increased adiponectin and reduced urate, leptin, and insulin concentrations, thus positively affecting overall low-grade inflammation, and GLP-1ras may also greatly help at the lung tissue level, meaning that their extra-glycemic effects extend well beyond those acknowledged in the cardiovascular and renal fields. CONCLUSIONS: The aforedescribed observational clinical data relating to a population of Italian inpatients with T2DM suggest that GLP-1ras and SGLT-2is can be considered antidiabetic drugs of choice against COVID-19, and might even prove beneficial in the event of any upcoming pandemic that has life-threatening effects on the pulmonary and cardiovascular systems.

7.
Physiol Behav ; 271: 114356, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769861

RESUMEN

OBJECTIVES: The ability to redirect one's attention in response to various environmental situations is a crucial aspect of selective attention in team sports. Thus, the aim of this study was to investigate whether repetitive transcranial magnetic stimulation (rTMS) in volleyball players can improve Posner test response and cortical excitability. This study had a double-blinded (participant and evaluator) matched-pair experimental design. METHODS: Twenty right-handed female volleyball players were recruited for the study and randomly assigned to either the active rTMS group (n = 10) or the sham stimulation group (n = 10). The stimulation was performed in one session with 10 Hz, 80% of the resting motor threshold (RMT), 5 s of stimulation, and 15 s of rest, for a total of 1,500 pulses. Before and after stimulation, the Posner test and cortical excitability were evaluated. RESULTS: The significant finding of this paper was that 10 Hz rTMS to the DLPFC seemed to improve Posner test response, and also resulted in a significantly decreased RMT and MEP latency of the ipsilateral motor cortex. After stimulation, the active group showed a significant decrease in the percentage of errors in the Posner test. Moreover, active group showed faster RT after rTMS, suggesting that HF stimulation could enhance performance. Additionally, significant differences in RMT emerged in the active rTMS group after stimulation, while no differences were observed in MEP latency and MEP amplitude. CONCLUSION: In conclusion, we believe that these results may be of great interest to the scientific community and could have practical implications in the future.


Asunto(s)
Voleibol , Humanos , Femenino , Estimulación Magnética Transcraneal/métodos , Encéfalo , Potenciales Evocados Motores
8.
J Funct Morphol Kinesiol ; 8(3)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37606402

RESUMEN

The correct assessment of body composition is essential for an accurate diagnostic evaluation of nutritional status. The body mass index (BMI) is the most widely adopted indicator for evaluating undernutrition, overweight, and obesity, but it is unsuitable for differentiating changes in body composition. In recent times, bioelectrical impedance analyses (BIA) have been proven as a more accurate procedure for the assessment of body composition. Furthermore, the efficiency of bioelectrical impedance vector analyses, as an indicator of nutritional status and hydration, has been demonstrated. By applying a bioimpedance analysis, it is possible to detect fat mass (FM), fat free mass (FFM), phase angle, and body cell mass (BCM). It is important to point out that phase angle and BCM are strongly associated with health status. The aim of this research was to examine body composition and the association between the phase angle and BCM in 87 subjects (14 males and 73 females), aged between 23 and 54 years, with BMIs ranging from 17.0 to 32.0 kg/m2, according to sex. The BMI results revealed that the majority of the assessed subjects were within the normal range and had a normal percentage of FM. Our data indicate that a direct relation exists between phase angle and cellular health and that these values increase almost linearly. Consequently, a high phase angle may be related to increased BCM values.

10.
Biomedicines ; 11(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37626788

RESUMEN

Novel antidiabetic drugs have the ability to produce anti-inflammatory effects regardless of their glucose-lowering action. For this reason, these molecules (including GLP-1 RAs and DPP-4is) were hypothesized to be effective against COVID-19, which is characterized by cytokines hyperactivity and multiorgan inflammation. The aim of our work is to explore the potential protective role of GLP-1 RAs and DPP-4is in COVID-19 (with the disease intended to be a model of an acute stressor) and non-COVID-19 patients over a two-year observation period. Retrospective and one-versus-one analyses were conducted to assess the impact of antidiabetic drugs on the need for hospitalization (in both COVID-19- and non-COVID-19-related cases), in-hospital mortality, and two-year mortality. Logistic regression analyses were conducted to identify the variables associated with these outcomes. Additionally, log-rank tests were used to plot survival curves for each group of subjects, based on their antidiabetic treatment. The performed analyses revealed that despite similar hospitalization rates, subjects undergoing home therapy with GLP-1 RAs exhibited significantly lower mortality rates, even over a two-year period. These individuals demonstrated improved survival estimates both within hospital and non-hospital settings, even during a longer observation period.

11.
Nutrients ; 15(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447220

RESUMEN

BACKGROUND: The years spent at university represent a critical period that can influence both the quality of lifestyle and the eating habits of subsequent adulthood, and also, in the long term, the health of the individual. The aim of this study was to investigate the lifestyle of university students living away from home. METHODS: Each subject recruited for the study was given a questionnaire to obtain general information, eating habits and physical activity levels before (T0) and after six month of training seminars (T1). Blood pressure, body composition and questionnaire responses were investigated. RESULTS: The main findings of this study are a significant decrement in blood pressure; an increment in physical activity practice; an increased number of subjects who pay attention to the calorific value of food and also an improvement in BIA parameters. CONCLUSIONS: In conclusion, this study demonstrated the challenges that university students face in leading a healthy lifestyle and caring for their nutritional needs, particularly when they are away from their families. No intervention specifically targets young adults, even though much emphasis is placed on the promotion of a healthy lifestyle based on a varied and balanced diet and sufficient exercise. Our study showed that it is possible to improve lifestyle through educational events aimed at making students aware of the health risks deriving from unhealthy lifestyles.


Asunto(s)
Educación en Salud , Estilo de Vida , Adulto Joven , Humanos , Adulto , Estudiantes , Escolaridad , Conducta Alimentaria , Universidades
12.
BMC Neurosci ; 24(1): 30, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161411

RESUMEN

INTRODUCTION: It is widely demonstrated that high frequency (HF) repetitive transcranial magnetic stimulation (rTMS) has facilitative effects and is therefore capable to inducing changes in motor responses. One of the most investigated areas is the dorsolateral prefrontal cortex (DLPFC) as it plays a special executive attention role in actively preserving access to stimulus representations and objectives in environments with plenty of distraction such as those of team sports. Volleyball is a team sport in which the attention and coordination components are essential for achieving performance. Thus, the aim of this study was to investigate if HF rTMS at DLPFC in volleyball players can improve homolateral motor coordination and cortical excitability. RESULTS: This study was a double-blinded (participant and evaluator) matched-pair experimental design. Twenty right-handed female volleyball players were recruited for the study and were randomly assigned either the active rTMS (n = 10) or the sham stimulation group (n = 10). The stimulation was performed in one session with 10 Hz, 80% of the resting motor threshold (RMT) of the right first dorsal interosseous muscle, 5 s of stimulation, and 15 s of rest, for a total of 1500 pulses. Before and after stimulation, the coordination and the cortical excitability were evaluated. The significant finding of this paper was that HF-rTMS of the DLPFC improved performance in terms of the homolateral interlimb coordination, with a significantly decreased in resting motor threshold and MEP latency of the ipsilateral motor cortex. It seem that HF-rTMS could increase coordination performances when the velocity of the execution is higher (120 bpm and 180 bpm). CONCLUSION: Moreover, in active rTMS group significant differences emerged after stimulation in RMT and in MEP latency, while no differences emerged after stimulation in MEP amplitude. In conclusion we believe that these results may be of great interest to the scientific community and may also have practical implications in the future.


Asunto(s)
Corteza Motora , Voleibol , Humanos , Femenino , Estimulación Magnética Transcraneal , Mano , Músculos
13.
Brain Sci ; 13(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37239206

RESUMEN

Agomelatine (AGM) is one of the latest atypical antidepressants, prescribed exclusively for the treatment of depression in adults. AGM belongs to the pharmaceutical class of melatonin agonist and selective serotonin antagonist ("MASS"), as it acts both as a selective agonist of melatonin receptors MT1 and MT2, and as a selective antagonist of 5-HT2C/5-HT2B receptors. AGM is involved in the resynchronization of interrupted circadian rhythms, with beneficial effects on sleep patterns, while antagonism on serotonin receptors increases the availability of norepinephrine and dopamine in the prefrontal cortex, with an antidepressant and nootropic effect. The use of AGM in the pediatric population is limited by the scarcity of data. In addition, few studies and case reports have been published on the use of AGM in patients with attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Considering this evidence, the purpose of this review is to report the potential role of AGM in neurological developmental disorders. AGM would increase the expression of the cytoskeleton-associated protein (ARC) in the prefrontal cortex, with optimization of learning, long-term memory consolidation, and improved survival of neurons. Another important feature of AGM is the ability to modulate glutamatergic neurotransmission in regions associated with mood and cognition. With its synergistic activity a melatoninergic agonist and an antagonist of 5-HT2C, AGM acts as an antidepressant, psychostimulant, and promoter of neuronal plasticity, regulating cognitive symptoms, resynchronizing circadian rhythms in patients with autism, ADHD, anxiety, and depression. Given its good tolerability and good compliance, it could potentially be administered to adolescents and children.

14.
Front Psychol ; 14: 1121251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063521

RESUMEN

Background: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms. The latter mainly include affective, sleep, and cognitive deficits. Non-demented PD patients often demonstrate impairments in several executive domains following neuropsychological evaluation. The current pilot study aims at assessing the discriminatory power of the Frontal Assessment Battery-15 (FAB15) in differentiating (i) non-demented PD patients and healthy controls and (ii) PD patients with more and less pronounced motor symptoms. Methods: Thirty-nine non-demented early-stage PD patients in the "on" dopamine state (26 females, mean age = 64.51 years, SD = 6.47, mean disease duration = 5.49 years, SD = 2.28) and 39 healthy participants (24 females, mean age = 62.60 years, SD = 5.51) were included in the study. All participants completed the FAB15. Motor symptoms of PD patients were quantified via the Unified Parkinson's Disease Rating Scale-Part III (UPDRS-Part III) and Hoehn and Yahr staging scale (H&Y). Results: The FAB15 score, adjusted according to normative data for sex, age, and education, proved to be sufficiently able to discriminate PD patients from healthy controls (AUC = 0.69 [95% CI 0.60-0.75], SE = 0.06, p = 0.04, optimal cutoff = 11.29). Conversely, the battery lacked sufficient discriminative capability to differentiate PD patients based on the severity of motor symptoms. Conclusion: The FAB15 may be a valid tool for distinguishing PD patients from healthy controls. However, it might be less sensitive in identifying clinical phenotypes characterized by visuospatial impairments resulting from posteroparietal and/or temporal dysfunctions. In line with previous evidence, the battery demonstrated to be not expendable in the clinical practice for monitoring the severity of PD-related motor symptoms.

15.
Molecules ; 28(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110573

RESUMEN

Microglia, the resident macrophage-like population in the central nervous system, play a crucial role in the pathogenesis of many neurodegenerative disorders by triggering an inflammatory response that leads to neuronal death. Neuroprotective compounds to treat or prevent neurodegenerative diseases are a new field of study in modern medicine. Microglia are activated in response to inflammatory stimuli. The pathogenesis of various neurodegenerative diseases is closely related to the constant activation of microglia due to their fundamental role as a mediator of inflammation in the brain environment. α-Tocopherol, also known as vitamin E, is reported to possess potent neuroprotective effects. The goal of this study was to investigate the biological effects of vitamin E on BV2 microglial cells, as a possible neuroprotective and anti-inflammatory agent, following stimulation with lipopolysaccharide (LPS). The results showed that the pre-incubation of microglia with α-tocopherol can guarantee neuroprotective effects during microglial activation induced by LPS. α-Tocopherol preserved the branched morphology typical of microglia in a physiological state. It also reduced the migratory capacity; the production of pro-inflammatory and anti-inflammatory cytokines such as TNF-α and IL-10; and the activation of receptors such as TRL4 and CD40, which modulate the PI3K-Akt signaling pathway. The results of this study require further insights and research, but they present new scenarios for the application of vitamin E as an antioxidant for the purpose of greater neuroprotection in vivo for the prevention of possible neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Lipopolisacáridos/farmacología , Microglía , alfa-Tocoferol/farmacología , alfa-Tocoferol/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Vitamina E/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , FN-kappa B/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-36833753

RESUMEN

Knowledge about the mechanisms of transmission and the processing of nociceptive information, both in healthy and pathological states, has greatly expanded in recent years. This rapid progress is due to a multidisciplinary approach involving the simultaneous use of different branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular techniques. This narrative review aims to clarify the mechanisms of transmission and the processing of pain while also taking into account the characteristics and properties of nociceptors and how the immune system influences pain perception. Moreover, several important aspects of this crucial theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in pain and inflammation. The interactions between the immune system and nociceptors occur within peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or chemical mediators may provide promising novel approaches to the treatment of pain and chronic inflammatory disease. The sensory nervous system is fundamental in the modulation of the host's protective response, and understanding its interactions is pivotal in the process of revealing new strategies for the treatment of pain.


Asunto(s)
Nociceptores , Dolor , Humanos , Nociceptores/fisiología , Sistema Inmunológico , Sistema Nervioso Central , Enfermedad Crónica
17.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834515

RESUMEN

The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.


Asunto(s)
Dieta Cetogénica , Fármacos Neuroprotectores , Humanos , Ácido 3-Hidroxibutírico/farmacología , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Citocinas/metabolismo , Fármacos Neuroprotectores/farmacología
19.
Front Endocrinol (Lausanne) ; 13: 1048363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440204

RESUMEN

Background: The present study examines the relationship between obesity, executive functions, and body image in a nonclinical population from southern Italy. Methods: General executive functioning (Frontal Assessment Battery-15), and body image disturbances (Body Uneasiness Test) were assessed in a sample including 255 participants (138 females, M age = 43.51 years, SD = 17.94, range = 18-86 years; M body mass index (BMI) = 26.21, SD = 4.32, range = 18.03-38.79). Findings: Multiple Linear Regression Analysis indicated that age, years of education, FAB15 score, body image concerns, and avoidance predicted the variance of BMI. A subsequent mediation analysis highlighted that the indirect effect of FAB15 on BMI through avoidance was statistically significant. Interpretation: Our results suggest that more performing executive functioning predicts a decrease in BMI that is partially due to the mitigation of avoidance behaviors.


Asunto(s)
Reacción de Prevención , Función Ejecutiva , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Pérdida de Peso , Obesidad
20.
Biology (Basel) ; 11(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36290330

RESUMEN

Extracellular vesicles (EVs) represent a heterogeneous group of membranous structures derived from cells that are released by all cell types, including brain cells. EVs are now thought to be an additional mechanism of intercellular communication. Both under normal circumstances and following the addition of proinflammatory stimuli, microglia release EVs, but the contents of these two types of EVs are different. Microglia are considered the brain-resident immune cells that are involved in immune surveillance and inflammatory responses in the central nervous system. In this research, we have analyzed the effects of EVs isolated from microglia in response to LPS (Lipopolysaccharide) on microglia activation. The EVs produced as result of LPS stimulation, knows as EVs-LPS, were then used as stimuli on microglia BV2 resting cells in order to investigate their ability to induce microglia to polarize towards an inflammatory state. After EVs-LPS stimulation, we analyzed the change to BV2 cells' morphology, proliferation, and migration, and investigated the expression and the release of pro-inflammatory cytokines. The encouraging findings of this study showed that EVs-LPS can activate microglia in a manner similar to that of LPS alone and that EVs derived from control cells cannot polarize microglia towards a pro-inflammatory state. This study has confirmed the critical role of EVs in communication and shown how EVs produced in an inflammatory environment can exacerbate the inflammatory process by activating microglia, which may have an impact on all brain cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...