Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(16)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37877494

RESUMEN

Nanosheets of transition metal dichalcogenides with prospects of photocatalysis and optoelectronics applications have significant potential in device fabrication due to their low-cost production and easily controllable morphology. Here, non-degenerate pump-probe differential transmission studies with varying pump-fluence have been carried out on single-phase 2H-MoSe2 and mixed-phase 1T/2H-MoSe2 nanosheets to characterize their excited carrier dynamics. For both the samples, the differential probe transmission data show photo-induced bleaching at earlier pump-probe delay followed by photo-induced absorption unveiling signatures of exciton-state filling, exciton trapping, defect-mediated photo-induced probe absorption and recombination of defect bound excitons. The exciton trapping and photo-induced absorption by the trapped-carriers are estimated to occur with time constant of ∼430 to 500 fs based on multi-exponential modelling of the differential transmission till pump-probe delay of ∼3.5 ps. Biexponential modeling of the subsequent slow-recovery of the negative differential transmission at pump-probe delay ≳3.5 ps reveals that the exciton recombination happens via two distinct decay channels with ∼25 to 55 ps (τ1) and ≳1 ns (τ2) time constants. Pump-fluence dependent reduction in τ1 and further modelling of exciton population using higher order kinetic rate equation reveals that the two-body exciton-exciton annihilation governs the exciton recombination initially with a decay rate of ∼10-8 cm3s-1. The detailed analysis suggests that the fraction of total excitons that decay via long decay channel decreases with increasing exciton density for 2H-MoSe2, in contrast to 1T/2H-MoSe2 where the fraction of excitons decaying via long decay channel remains constant.

3.
Appl Biochem Biotechnol ; 195(6): 3681-3698, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36961511

RESUMEN

Contamination of freshwater wetlands with toxic heavy metals and metalloids is a significant public health concern. Cadmium (Cd) is one of the most common heavy metals affecting water bodies and fish. In the Dankuni wetland (DW) ecosystem in India, variations in Cd concentration from the aquatic system to different fish tissues have been investigated. Channa punctata is an easily accessible fish with a high nutritional value, and offers a good economic return for the fishermen of West Bengal. A dynamic model was constructed considering the importance of the Cd concentration in the water of the wetland system and different fish tissues. A sensitivity analysis was performed to assess the valuable contribution of different parameters that determine the dynamics of Cd concentration in a wetland aquatic environment. The observed data is used to verify the model simulation performance. To predict the effects of Cd on humans, a survey of fish consumers was conducted around DW. Individuals living near DW, on low income (<5,000 INR) and over the age of fifty, were at high risk of Cd contamination. Their average daily intake rate was quite high (2.48×10-5 mg kg-1 day-1) and the hazard quotient calculated for these individuals was also high (0.024). People over age of 50 years had renal, cardiovascular, and osteological diseases with disease percentages of 56%, 46%, and 45%, respectively. Data on Cd-related health problems were collected from Cd-associated and non-Cd-associated individuals residing in the periphery of DW. The system-sensitive parameter was the rate of Cd entry into the water system (C Inp rt). If the Cd level is checked at the entrance of the reservoir by management policy; the risk of Cd contamination to human may be minimized in this area.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Humanos , Persona de Mediana Edad , Cadmio , Ecosistema , Humedales , Bioacumulación , Contaminantes Químicos del Agua/análisis , Peces , Agua/análisis , Monitoreo del Ambiente
4.
Sci Total Environ ; 866: 161319, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36608827

RESUMEN

Coastal mangroves have been lost to deforestation for anthropogenic activities such as agriculture over the past two decades. The genesis of methane (CH4), a significant greenhouse gas (GHG) with a high potential for global warming, occurs through these mangrove beds. The mangrove forests in the Indian Sundarban deltaic region were studied for pre-monsoonal and post-monsoonal variations of CH4 emission. Considering the importance of CH4 emission, a process-based spatiotemporal (PBS) and an analytical neural network (ANN) model were proposed and used to estimate the amount of CH4 emission from different land use land cover classes (LULC) of mangroves. The field work was performed in 2020, and gas samples of various LULC were directly collected from the mangrove bed using the enclosed box chamber method. Historical climatic data (1960-1989) were used to predict future climate scenarios and associated CH4 emissions. The analysis and estimation activities were carried out utilizing satellite images from the pre-monsoonal and post-monsoonal seasons of the same year. The study revealed that pre-monsoonal CH4 emission was higher in the south-west and northern parts of the deforested mangrove of the Indian Sundarban. A sensitivity study of the anticipated models was conducted using a variety of environmental input parameters and related main field observations. The measured precision area under curve of receiver operating characteristics was 0.753 for PBS and 0.718 for ANN models, respectively. The temperature factor (Tf) was the most crucial variable for CH4 emissions. Based on the PBS model with coupled model intercomparison project-6 temperature data, a global circulation model was run to predict increasing CH4 emissions up to 2100. The model revealed that the agricultural lands were the prime emitters of CH4 in the Sundarban mangrove ecosystem.

5.
Soft comput ; 27(6): 3367-3388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34276248

RESUMEN

The COVID-19 pandemic enforced nationwide lockdown, which has restricted human activities from March 24 to May 3, 2020, resulted in an improved air quality across India. The present research investigates the connection between COVID-19 pandemic-imposed lockdown and its relation to the present air quality in India; besides, relationship between climate variables and daily new affected cases of Coronavirus and mortality in India during the this period has also been examined. The selected seven air quality pollutant parameters (PM10, PM2.5, CO, NO2, SO2, NH3, and O3) at 223 monitoring stations and temperature recorded in New Delhi were used to investigate the spatial pattern of air quality throughout the lockdown. The results showed that the air quality has improved across the country and average temperature and maximum temperature were connected to the outbreak of the COVID-19 pandemic. This outcomes indicates that there is no such relation between climatic parameters and outbreak and its associated mortality. This study will assist the policy maker, researcher, urban planner, and health expert to make suitable strategies against the spreading of COVID-19 in India and abroad. Supplementary Information: The online version contains supplementary material available at 10.1007/s00500-021-06012-9.

6.
Commun Biol ; 5(1): 552, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672382

RESUMEN

Chronic multisymptom illness (CMI) affects a subsection of elderly and war Veterans and is associated with systemic inflammation. Here, using a mouse model of CMI and a group of Gulf War (GW) Veterans' with CMI we show the presence of an altered host resistome. Results show that antibiotic resistance genes (ARGs) are significantly altered in the CMI group in both mice and GW Veterans when compared to control. Fecal samples from GW Veterans with persistent CMI show a significant increase of resistance to a wide class of antibiotics and exhibited an array of mobile genetic elements (MGEs) distinct from normal healthy controls. The altered resistome and gene signature is correlated with mouse serum IL-6 levels. Altered resistome in mice also is correlated strongly with intestinal inflammation, decreased synaptic plasticity, reversible with fecal microbiota transplant (FMT). The results reported might help in understanding the risks to treating hospital acquired infections in this population.


Asunto(s)
Guerra del Golfo , Veteranos , Anciano , Enfermedad Crónica , Humanos , Inflamación/genética
7.
Chem Commun (Camb) ; 58(24): 3929-3932, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35244129

RESUMEN

Naturally occurring bis(cyclotryptamine) alkaloids feature vicinal all-carbon quaternary stereocenters with an elongated labile C-3a-C-3a' Sigma bond with impressive biological activities. In this report, we have developed a thio-urea catalyzed one-pot sequential Michael addition of bis-oxindole onto selenone to access enantioenriched dimeric 2-oxindoles with vicinal quaternary stereogenic centers at the pseudobenzylic position (up to 96% ee and >20 : 1 dr). This strategy has been successfully applied for the total syntheses of either enantiomers of chimonanthine, folicanthine, and calycanthine.


Asunto(s)
Alcaloides , Urea , Alcaloides/química , Catálisis , Estructura Molecular , Estereoisomerismo
8.
Comput Biol Med ; 150: 106183, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37859281

RESUMEN

The brain tumor is one of the deadliest diseases of all cancers. Influenced by the recent developments of convolutional neural networks (CNNs) in medical imaging, we have formed a CNN based model called BMRI-Net for brain tumor classification. As the activation function is one of the important modules of CNN, we have proposed a novel parametric activation function named Parametric Flatten-p Mish (PFpM) to improve the performance. PFpM can tackle the significant disadvantages of the pre-existing activation functions like neuron death and bias shift effect. The parametric approach of PFpM also offers the model some extra flexibility to learn the complex patterns more accurately from the data. To validate our proposed methodology, we have used two brain tumor datasets namely Figshare and Br35H. We have compared the performance of our model with state-of-the-art deep CNN models like DenseNet201, InceptionV3, MobileNetV2, ResNet50 and VGG19. Further, the comparative performance of PFpM has been presented with various activation functions like ReLU, Leaky ReLU, GELU, Swish and Mish. We have performed record-wise and subject-wise (patient-level) experiments for Figshare dataset whereas only record-wise experiments have been performed in case of Br35H dataset due to unavailability of subject-wise information. Further, the model has been validated using hold-out and 5-fold cross-validation techniques. On Figshare dataset, our model has achieved 99.57% overall accuracy with hold-out validation and 98.45% overall accuracy with 5-fold cross validation in case of record-wise data split. On the other hand, the model has achieved 97.91% overall accuracy with hold-out validation and 97.26% overall accuracy with 5-fold cross validation in case of subject-wise data split. Similarly, for Br35H dataset, our model has attained 99% overall accuracy with hold-out validation and 98.33% overall accuracy with 5-fold cross validation using record-wise data split. Hence, our findings can introduce a secondary procedure in the clinical diagnosis of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos
9.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592338

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Tabernaemontana/química , Proteínas Quinasas Activadas por AMP/metabolismo , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Brain Sci ; 11(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34356139

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut-Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut-Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1ß and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut-Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.

11.
Toxicology ; 461: 152901, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34416350

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has been shown to be associated with extrahepatic comorbidities including neuronal inflammation and Alzheimer's-like pathology. Environmental and genetic factors also act as a second hit to modulate severity and are expected to enhance the NAFLD-linked neuropathology. We hypothezied that environmental microcystin-LR (MC-LR), a toxin produced by harmful algal blooms of cyanobacteria, exacerbates the neuroinflammation and degeneration of neurons associated with NAFLD. Using a mouse model of NAFLD, exposed to MC-LR subsequent to the onset of fatty liver, we show that the cyanotoxin could significantly increase proinflammatory cytokine expression in the frontal cortex and cause increased expression of Lcn2 and HMGB1. The above effects were NLRP3 inflammasome activation-dependent since the use of NLRP3 knockout mice abrogated the increase in inflammation. NLRP3 was also responsible for decreased expression of the blood-brain barrier (BBB) tight junction proteins Occludin and Claudin 5 suggesting BBB dysfunction was parallel to neuroinflammation following microcystin exposure. An increased circulatory S100B release, a hallmark of astrocyte activation in MC-LR exposed NAFLD mice also confirmed BBB integrity loss, but the astrocyte activation observed in vivo was NLRP3 independent suggesting an important role of a secondary S100B mediated crosstalk. Mechanistically, conditioned medium from reactive astrocytes and parallel S100B incubation in neuronal cells caused increased inducible NOS, COX-2, and higher BAX/ Bcl2 protein expression suggesting oxidative stress-mediated neuronal cell apoptosis crucial for neurodegeneration. Taken together, MC-LR exacerbated neuronal NAFLD-linked comorbidities leading to cortical inflammation, BBB dysfunction, and neuronal apoptosis.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Inflamasomas/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neuroinflamatorias/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
12.
Inorg Chem ; 59(23): 17326-17339, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33213153

RESUMEN

Developing electrocatalysts with abundant active sites is a substantial challenge to reduce the overpotential requirement for the alkaline oxygen evolution reaction (OER). In this work, we have aimed to improve the catalytic activity of cobalt selenides by growing them over the self-supported Co3O4 microrods. Initially, Co3O4 microrods were synthesized through annealing of an as-prepared cobalt oxalate precursor. The subsequent selenization of Co3O4 resulted in the formation of a grainy rodlike Co3O4/Co0.85Se/Co9Se8 network. The structural and morphological analysis reveals the presence of Co3O4 even after the selenization treatment where the cobalt selenide nanograins are randomly covered over the Co3O4 support. The resultant electrode shows superior electrocatalytic activity toward OER in alkaline medium by delivering a benchmark current density of 10 mA/cm2geo at an overpotential of 330 mV. As a comparison, we have developed Co0.85Se/Co9Se8 under similar conditions and evaluated its OER activity. This material consumes an overpotential of 360 mV to deliver the benchmark current density, which signifies the role of the Co3O4 support to improve the electrocatalytic activity of Co0.85Se/Co9Se8. Despite having a low TOF value for Co3O4/Co0.85Se/Co9Se8 (0.0076 s-1) compared to Co0.85Se/Co9Se8 (0.0102 s-1), the improved catalytic activity of Co3O4/Co0.85Se/Co9Se8 is attributed to the presence of a higher number of active sites rather than the improved per site activity. This is further supported from the Cdl (double layer capacitance) measurements where Co3O4/Co0.85Se/Co9Se8 and Co0.85Se/Co9Se8 tender Cdl values of about 8.19 and 1.08 mF/cm2, respectively, after electrochemical precondition. As-prepared Co3O4/Co0.85Se/Co9Se8 also manifests rapid kinetics (low Tafel slope ∼ 91 mV/dec), long-term stability, low charge-transfer resistance, and 82% Faradaic efficiency for alkaline electrocatalysis (pH = 14). Furthermore, the proton reaction order (ρRHE) is found to be 0.65, indicating a proton decoupled electron transfer (PDET) mechanism for alkaline OER. Thus, the Co3O4 support helps in the exposure of more catalytic sites of Co0.85Se/Co9Se8 to deliver the improved catalytic activities in alkaline medium.

13.
Nutrients ; 12(9)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927823

RESUMEN

Persistence of Gulf War illness (GWI) pathology among deployed veterans is a clinical challenge even after almost three decades. Recent studies show a higher prevalence of obesity and metabolic disturbances among Gulf War veterans primarily due to the existence of post-traumatic stress disorder (PTSD), chronic fatigue, sedentary lifestyle, and consumption of a high-carbohydrate/high-fat diet. We test the hypothesis that obesity from a Western-style diet alters host gut microbial species and worsens gastrointestinal and neuroinflammatory symptom persistence. We used a 5 month Western diet feeding in mice that received prior Gulf War (GW) chemical exposure to mimic the home phase obese phenotype of the deployed GW veterans. The host microbial profile in the Western diet-fed GWI mice showed a significant decrease in butyrogenic and immune health-restoring bacteria. The altered microbiome was associated with increased levels of IL6 in the serum, Claudin-2, IL6, and IL1ß in the distal intestine with concurrent inflammatory lesions in the liver and hyperinsulinemia. Microbial dysbiosis was also associated with frontal cortex levels of increased IL6 and IL1ß, activated microglia, decreased levels of brain derived neurotrophic factor (BDNF), and higher accumulation of phosphorylated Tau, an indicator of neuroinflammation-led increased risk of cognitive deficiencies. Mechanistically, serum from Western diet-fed mice with GWI significantly increased microglial activation in transformed microglial cells, increased tyrosyl radicals, and secreted IL6. Collectively, the results suggest that an existing obese phenotype in GWI worsens persistent gastrointestinal and neuronal inflammation, which may contribute to poor outcomes in restoring cognitive function and resolving fatigue, leading to the deterioration of quality of life.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Obesidad/microbiología , Obesidad/patología , Síndrome del Golfo Pérsico/microbiología , Síndrome del Golfo Pérsico/patología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Disbiosis/microbiología , Disbiosis/patología , Gastroenteritis/complicaciones , Gastroenteritis/microbiología , Gastroenteritis/patología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Hepatitis/complicaciones , Hepatitis/microbiología , Hepatitis/patología , Inflamación , Hígado/microbiología , Hígado/patología , Ratones , Neuritis/complicaciones , Neuritis/microbiología , Neuritis/patología , Neuronas/microbiología , Neuronas/patología , Obesidad/complicaciones , Síndrome del Golfo Pérsico/complicaciones
14.
Brain Sci ; 10(8)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784362

RESUMEN

The 1991 Persian Gulf War veterans presented a myriad of symptoms that ranged from chronic pain, fatigue, gastrointestinal disturbances, and cognitive deficits. Currently, no therapeutic regimen exists to treat the plethora of chronic symptoms though newer pharmacological targets such as microbiome have been identified recently. Toll-like receptor 4 (TLR4) antagonism in systemic inflammatory diseases have been tried before with limited success, but strategies with broad-spectrum TLR4 antagonists and their ability to modulate the host-microbiome have been elusive. Using a mouse model of Gulf War Illness, we show that a nutraceutical, derived from a Chinese herb Sparstolonin B (SsnB) presented a unique microbiome signature with an increased abundance of butyrogenic bacteria. SsnB administration restored a normal tight junction protein profile with an increase in Occludin and a parallel decrease in Claudin 2 and inflammatory mediators high mobility group box 1 (HMGB1), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in the distal intestine. SsnB also decreased neuronal inflammation by decreasing IL-1ß and HMGB1, while increasing brain-derived neurotrophic factor (BDNF), with a parallel decrease in astrocyte activation in vitro. Mechanistically, SsnB inhibited the binding of HMGB1 and myeloid differentiation primary response protein (MyD88) to TLR4 in the intestine, thus attenuating TLR4 downstream signaling. Studies also showed that SsnB was effective in suppressing TLR4-induced nod-like receptor protein 3 (NLRP3) inflammasome activation, a prominent inflammatory disease pathway. SsnB significantly decreased astrocyte activation by decreasing colocalization of glial fibrillary acid protein (GFAP) and S100 calcium-binding protein B (S100B), a crucial event in neuronal inflammation. Inactivation of SsnB by treating the parent molecule by acetate reversed the deactivation of NLRP3 inflammasome and astrocytes in vitro, suggesting that SsnB molecular motifs may be responsible for its anti-inflammatory activity.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32781293

RESUMEN

Clinical studies implicated an increased risk of intestinal fibrosis in patients with nonalcoholic fatty liver disease (NAFLD). Our previous studies have shown that microcystin-LR (MC-LR) exposure led to altered gut microbiome and increased abundance of lactate producing bacteria and intestinal inflammation in underlying NAFLD. This led us to further investigate the effects of the MC-LR, a PP2A inhibitor in activating the TGF-ß fibrotic pathway in the intestines that might be mediated by increased lactate induced redox enzyme NOX2. Exposure to MC-LR led to higher lactate levels in circulation and in the intestinal content. The higher lactate levels were associated with NOX2 activation in vivo that led to increased Smad2/3-Smad4 co-localization and high alpha-smooth muscle actin (α-SMA) immunoreactivity in the intestines. Mechanistically, primary mouse intestinal epithelial cells treated with lactate and MC-LR separately led to higher NOX2 activation, phosphorylation of TGFßR1 receptor and subsequent Smad 2/3-Smad4 co-localization inhibitable by apocynin (NOX2 inhibitor), FBA (a peroxynitrite scavenger) and DMPO (a nitrone spin trap), catalase and superoxide dismutase. Inhibition of NOX2-induced redox signaling also showed a significant decrease in collagen protein thus suggesting a strong redox signaling induced activation of an ectopic fibrotic manifestation in the intestines. In conclusion, the present study provides mechanistic insight into the role of microcystin in dysbiosis-linked lactate production and subsequently advances our knowledge in lactate-induced NOX2 exacerbation of the cell differentiation and fibrosis in the NAFLD intestines.


Asunto(s)
Fibrosis/patología , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ácido Láctico/metabolismo , Microcistinas/toxicidad , NADPH Oxidasa 2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Línea Celular , Inhibidores Enzimáticos/toxicidad , Fibrosis/enzimología , Fibrosis/etiología , Mucosa Intestinal/efectos de los fármacos , Intestinos/enzimología , Intestinos/patología , Ácido Láctico/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/patología , Fosforilación
16.
Neurosci Insights ; 15: 2633105520942480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832901

RESUMEN

Neurological disorders are commonly reported among veterans who returned from the Gulf war. Veterans who suffer from Gulf War illness (GWI) complain of continued symptom persistence that includes neurological disorders, muscle weakness, headaches, and memory loss, that developed during or shortly after the war. Our recent research showed that chemical exposure associated microbial dysbiosis accompanied by a leaky gut connected the pathologies in the intestine, liver, and brain. However, the mechanisms that caused the symptoms to persist even 30 years after the war remained elusive to investigators. In this study, we used a rodent model of GWI to investigate the persistence of microbiome alterations, resultant chronic inflammation, and its effect on neurotrophic and synaptic plasticity marker BDNF. The results showed that exposure to GW chemicals (the pesticide permethrin and prophylactic drug pyridostigmine bromide) resulted in persistent pathology characterized by the low relative abundance of the probiotic bacteria Akkermansia muciniphila in the gut, which correlated with high circulatory HMGB1 levels, blood-brain barrier dysfunction, neuroinflammation and lowered neurotrophin BDNF levels. Mechanistically, we used mice lacking the NLRP3 gene to investigate this inflammasome's role in observed pathology. These mice had significantly decreased inflammation and a subsequent increase in BDNF in the frontal cortex. This suggests that a persistently low species abundance of Akkermansia muciniphila and associated chronic inflammation due to inflammasome activation might be playing a significant role in contributing to chronic neurological problems in GWI. A therapeutic approach with various small molecules that can target both the restoration of a healthy microbiome and decreasing inflammasome activation might have better outcomes in treating GWI symptom persistence.

17.
J Neuroinflammation ; 17(1): 201, 2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32622362

RESUMEN

BACKGROUND: Recent clinical and basic research implicated a strong correlation between NAFLD/NASH phenotypes with ectopic manifestations including neuroinflammation and neurodegeneration, but the mediators and critical pathways involved are not well understood. Lipocalin 2 (Lcn2) is one of the important mediators exclusively produced in the liver and circulation during NASH pathology. METHODS: Using murine model of NASH, we studied the role of Lcn2 as a potent mediator of neuroinflammation and neurodegeneration in NASH pathology via the liver-brain axis. RESULTS: Results showed that high circulatory Lcn2 activated 24p3R (Lipocalin2 receptor) in the brain and induced the release of high mobility group box 1 (HMGB1) preferably from brain cells. Released HMGB1 acted as a preferential ligand to toll-like receptor 4 (TLR4) and induced oxidative stress by activation of NOX-2 signaling involving activated p65 protein of the NF-κB complex. Further, the HMGB1-derived downstream signaling cascade activated NLRP3 inflammasome and release of proinflammatory cytokines IL-6 and IL-1ß from brain cells. In addition, to advance our present understanding, in vitro studies were performed in primary brain endothelial cells where results showed high circulatory Lcn2 influenced HMGB1 secretion. Mechanistically, we also showed that elevated Lcn2 level in underlying NASH might be a likely cause for induction of blood-brain barrier dysfunction since the adipokine decreased the expression of tight junction protein Claudin 5 and caused subsequent elevation of pro-inflammatory cytokines IL-6 and IL-1ß. CONCLUSION: In conclusion, the NASH-induced brain pathology might be because of increased Lcn2-induced release of HMGB1 and accompanying neuroinflammation.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Lipocalina 2/sangre , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteína HMGB1/metabolismo , Inflamasomas/metabolismo , Inflamación/patología , Hígado/patología , Ratones , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo
18.
Environ Toxicol Pharmacol ; 80: 103457, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32687983

RESUMEN

Evidence from pediatric studies show that infants and children are at risk for early exposure to microcystin. The present report tests the hypothesis that early life exposure to microcystin (MC), a principal component of harmful algal blooms followed by a juvenile exposure to high-fat diet feeding potentiate the development of nonalcoholic fatty liver disease phenotype in adulthood. Results showed classical symptoms of early NAFLD linked inflammation. Cytokines and chemokines such as CD68, IL-1ß, MCP-1, and TNF-α, as well as α-SMA were increased in the groups that were exposed to MC-LR with the high-fat diet compared to the vehicle group. Also, mechanistically, NLRP3 KO mice showed a significant decrease in the inflammation and NAFLD phenotype and resisted the metabolic changes such as insulin resistance and glucose metabolism in the liver. The data suggested that MC-LR exposure and subsequent NLRP3 inflammasome activation in childhood could impact liver health in juveniles.


Asunto(s)
Inflamasomas/metabolismo , Resistencia a la Insulina , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Contaminantes Químicos del Agua/toxicidad , Animales , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
19.
Front Physiol ; 10: 1229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680990

RESUMEN

About 14% of veterans who suffer from Gulf war illness (GWI) complain of some form of gastrointestinal disorder but with no significant markers of clinical pathology. Our previous studies have shown that exposure to GW chemicals resulted in altered microbiome which was associated with damage associated molecular pattern (DAMP) release followed by neuro and gastrointestinal inflammation with loss of gut barrier integrity. Enteric glial cells (EGC) are emerging as important regulators of the gastrointestinal tract and have been observed to change to a reactive phenotype in several functional gastrointestinal disorders such as IBS and IBD. This study is aimed at investigating the role of dysbiosis associated EGC immune-activation and redox instability in contributing to observed gastrointestinal barrier integrity loss in GWI via altered tight junction protein expression. Using a mouse model of GWI and in vitro studies with cultured EGC and use of antibiotics to ensure gut decontamination we show that exposure to GW chemicals caused dysbiosis associated change in EGCs. EGCs changed to a reactive phenotype characterized by activation of TLR4-S100ß/RAGE-iNOS pathway causing release of nitric oxide and activation of NOX2 since gut sterility with antibiotics prevented this change. The resulting peroxynitrite generation led to increased oxidative stress that triggered inflammation as shown by increased NLRP-3 inflammasome activation and increased cell death. Activated EGCs in vivo and in vitro were associated with decrease in tight junction protein occludin and selective water channel aquaporin-3 with a concomitant increase in Claudin-2. The tight junction protein levels were restored following a parallel treatment of GWI mice with a TLR4 inhibitor SsnB and butyric acid that are known to decrease the immunoactivation of EGCs. Our study demonstrates that immune-redox mechanisms in EGC are important players in the pathology in GWI and may be possible therapeutic targets for improving outcomes in GWI symptom persistence.

20.
Viruses ; 11(10)2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640184

RESUMEN

Gulf War illness (GWI) is characterized by the persistence of inflammatory bowel disease, chronic fatigue, neuroinflammation, headache, cognitive impairment, and other medically unexplained conditions. Results using a murine model show that enteric viral populations especially bacteriophages were altered in GWI. The increased viral richness and alpha diversity correlated positively with gut bacterial dysbiosis and proinflammatory cytokines. Altered virome signature in GWI mice also had a concomitant weakening of intestinal epithelial tight junctions with a significant increase in Claudin-2 protein expression and decrease in ZO1 and Occludin mRNA expression. The altered virome signature in GWI, decreased tight junction protein level was followed by the presence an activation of innate immune responses such as increased Toll-like receptor (TLR) signaling pathways. The altered virome diversity had a positive correlation with serum IL-6, IL-1ß, and IFN-γ, intestinal inflammation (IFN-γ), and decreased Brain-Derived Neurotrophic Factor (BDNF), a neurogenesis marker. The co-exposure of Gulf War chemical and antibiotic (for gut sterility) or Gulf War chemical and Ribavirin, an antiviral compound to suppress virus alteration in the gut showed significant improvement in epithelial tight junction protein, decreased intestinal-, systemic-, and neuroinflammation. These results showed that the observed enteric viral dysbiosis could activate enteric viral particle-induced innate immune response in GWI and could be a novel therapeutic target in GWI.


Asunto(s)
Bacterias/virología , Disbiosis/virología , Microbioma Gastrointestinal , Neuronas/patología , Síndrome del Golfo Pérsico , Virus/clasificación , Animales , Antivirales/administración & dosificación , Citocinas/inmunología , ADN , Modelos Animales de Enfermedad , Inmunidad Innata , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/inmunología , Permetrina/administración & dosificación , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/microbiología , Síndrome del Golfo Pérsico/virología , Fenotipo , Bromuro de Piridostigmina/administración & dosificación , Ribavirina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...