Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 15(46): 6417-6424, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37966884

RESUMEN

In this work, a novel fluorescent ratiometric switch, 8-((6-(1H-benzo[d]imidazol-2-yl)pyridin-2-yl)methoxy)quinoline (BIPQ), has been introduced for sensing an organophosphorus (OP) chemical vapor threat, diethyl chlorophosphate (DCP), the low-toxic mimic of the real nerve agent sarin (GB). BIPQ is efficient at detecting DCP in both solution and gaseous phase and has potential practical application with high sensitivity and selectivity. The probe shows significant ratiometric emission in the presence of DCP along with a distinct color change from blue to cyan under UV light. The sensing mechanism of the chemodosimeter is based on the generation of a new adduct, BIPQ-DCP, through a nucleophilic substitution reaction with DCP followed by a ring-closure process to form the final product. The detection limit of BIPQ for DCP was determined to be in the order of 10-8 (M) in the liquid state. DFT and TDDFT computational techniques were carried out in order to interpret the electronic properties theoretically.

2.
Planta ; 258(6): 111, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37919614

RESUMEN

MAIN CONCLUSION: Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.


Asunto(s)
Oryza , Oryza/fisiología , Serotonina/metabolismo , Fitomejoramiento , Estrés Salino , Metabolómica , Biomarcadores , Salinidad , Estrés Fisiológico
3.
J Appl Genet ; 64(4): 645-666, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743422

RESUMEN

Crop wild relatives (CWRs) are vital sources of variation for genetic improvement, but their populations are few in genebanks, eroded in natural habitats and inadequately characterized. With a view to explore genetic diversity in CWRs of AA genome rice (Oryza sativa L.) species in India, we analyzed 96 accessions of 10 Oryza species by using 17 quantitative traits and 45 microsatellite markers. The morpho-quantitative traits revealed a high extent of phenotypic variation in the germplasm. Diversity index (H') revealed a high level of within-species variability in O. nivara (H' = 1.09) and O. rufipogon (H' = 1.12). Principal component (PC) analysis explained 79.22% variance with five PCs. Among the traits related to phenology, morphology, and yield, days to heading showed strong positive association with days to 50% flowering (r = 0.99). However, filled grains per panicle revealed positive association with spikelet fertility (0.71) but negative with awn length (- 0.58) and panicle bearing tillers (- 0.39). Cluster analysis grouped all the accessions into three major clusters. Microsatellite analysis revealed 676 alleles with 15.02 alleles per locus. High polymorphism information content (PIC = 0.83) and Shannon's information index (I = 2.31) indicated a high level of genetic variation in the CWRs. Structure analysis revealed four subpopulations; first and second subpopulations comprised only of O. nivara accessions, while the third subpopulation included both O. nivara and O. rufipogon accessions. Population statistics revealed a moderate level of genetic differentiation (FST = 0.14), high gene diversity (HE = 0.87), and high gene flow (Nm = 1.53) among the subpopulations. We found a high level of molecular variance among the genotypes (70%) and low among populations (11%) and within genotypes (19%). The high level of molecular and morphological variability detected in the germplasm of CWRs could be utilized for the improvement of cultivated rice.


Asunto(s)
Variación Genética , Oryza , Oryza/genética , Alelos , Polimorfismo Genético , Fenotipo
4.
Front Microbiol ; 14: 1204512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485521

RESUMEN

Sustainable food production is necessary to meet the demand of the incessantly growing human population. Phytopathogens pose a major constraint in food production, and the use of conventional fungicides to manage them is under the purview of criticism due to their numerous setbacks. In the present study, essential oil-grafted copper nanoparticles (EGC) were generated, characterized, and evaluated against the maize fungal pathogens, viz., Bipolaris maydis, Rhizoctonia solani f. sp. sasakii, Macrophomina phaseolina, Fusarium verticillioides, and Sclerotium rolfsii. The ED50 for the fungi under study ranged from 43 to 56 µg ml-1, and a significant inhibition was observed at a low dose of 20 µg ml-1 under in vitro conditions. Under net house conditions, seed treatment + foliar spray at 250 and 500 mg L-1 of EGC performed remarkably against maydis leaf blight (MLB), with reduced percent disease index (PDI) by 27.116 and 25.292%, respectively, in two Kharif seasons (May-Sep, 2021, 2022). The activity of enzymatic antioxidants, viz., ß-1, 3-glucanase, PAL, POX, and PPO, and a non-enzymatic antioxidant (total phenolics) was increased in treated maize plants, indicating host defense was triggered. The optimum concentrations of EGC (250 mg L-1 and 500 mg L-1) exhibited improved physiological characteristics such as photosynthetic activity, shoot biomass, plant height, germination percentage, vigor index, and root system traits. However, higher concentrations of 1,000 mg L-1 rendered phytotoxicity, reducing growth, biomass, and copper bioaccumulation to high toxic levels, mainly in the foliar-sprayed maize leaves. In addition, EGC and copper nanoparticles (CuNPs) at 1,000 mg L-1 reduced the absorption and concentration of manganese and zinc indicating a negative correlation between Cu and Mn/Zn. Our study proposes that the CuNPs combined with EO (Clove oil) exhibit astounding synergistic efficacy against maize fungal pathogens and optimized concentrations can be used as an alternative to commercial fungicides without any serious impact on environmental health.

5.
Int J Biol Macromol ; 242(Pt 3): 125172, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37268077

RESUMEN

Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.


Asunto(s)
MicroARNs , Oryza , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Oryza/genética , Oryza/metabolismo , ARN no Traducido/genética , ARN de Transferencia/metabolismo , Plantones/genética , Plantones/metabolismo , Tolerancia a la Sal , ARN Largo no Codificante/metabolismo
6.
Anal Methods ; 15(22): 2745-2754, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37248997

RESUMEN

A diversified biphenyl thiosemicarbazide based chemosensor (HBMC) has been fabricated and reported for the specific detection of Cd2+ in a MeOH : H2O (4 : 1) solution. We observed a chromogenic change from colorless to light yellow colour, and it showed a "turn-on" fluorogenic change from non fluorescent to blooming cyan colour. In fluorometric titration a sharp "turn-on" emission for Cd2+ was observed with a ∼16 fold increase in fluorescence intensity value at 496 nm by incremental addition of Cd2+ ions in the MeOH : H2O (4 : 1) solution. The reversibility of the chemosensor (HBMC) was confirmed by a sequential addition of the EDTA solution. Again the binding stoichiometry of HBMC with Cd2+ was found to be 2 : 1, as confirmed by Job's plot analysis and HRMS spectra of the HBMC-Cd2+ complex. The mechanism for Cd2+ sensing in MeOH : H2O (4 : 1) is based upon the inhibition of CN isomerization and ESIPT process and simultaneously turning on the CHEF (chelation enhanced fluorescence) process. The limit of detection for Cd2+ was found to be in the order of 10-8 (M), which implies that HBMC is an efficient probe to detect Cd2+ at the microscopic level. A reusability study was performed and on-sight detection of cadmium ions by the chemosensor (HBMC) was established by dip-stick experiment. In vitro detection of Cd2+ in human breast cancer cells (MDA-MB-231) by HBMC discloses its cell permeability and biocompatible nature. Computational studies (DFT and TDDFT) with the probe HBMC and HBMC-Cd2+ complex were also performed.


Asunto(s)
Cadmio , Humanos , Cadmio/análisis , Espectrometría de Fluorescencia/métodos , Iones
7.
Plant Mol Biol ; 112(3): 143-160, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37184674

RESUMEN

Soil salinity stress is one of the major bottlenecks for crop production. Although, allantoin is known to be involved in nitrogen metabolism in plants, yet several reports in recent time indicate its involvement in various abiotic stress responses including salinity stress. However, the detail mechanism of allantoin involvement in salinity stress tolerance in plants is not studied well. Moreover, we demonstrated the role of exogenous application of allantoin as well as increased concentration of endogenous allantoin in rendering salinity tolerance in rice and Arabidopsis respectively, via., induction of abscisic acid (ABA) and brassinosteroid (BR) biosynthesis pathways. Exogenous application of allantoin (10 µM) provides  salt-tolerance to salt-sensitive rice genotype (IR-29). Transcriptomic data after exogenous supplementation of allantoin under salinity stress showed induction of ABA (OsNCED1) and BR (Oscytochrome P450) biosynthesis genes in IR-29. Further, the key gene of allantoin biosynthesis pathway i.e., urate oxidase of the halophytic species Oryza coarctata was also found to induce ABA and BR biosynthesis genes when over-expressed in transgenic Arabidopsis. Thus, indicating that ABA and BR biosynthesis pathways were involved in allantoin mediated salinity tolerance in both rice and Arabidopsis. Additionally, it has been found that several physio-chemical parameters such as biomass, Na+/K+ ratio, MDA, soluble sugar, proline, allantoin and chlorophyll contents were also associated with the allantoin-mediated salinity tolerance in urate oxidase overexpressed lines of Arabidopsis. These findings depicted the functional conservation of allantoin for salinity tolerance in both plant clades.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Oryza/genética , Oryza/metabolismo , Tolerancia a la Sal/genética , Alantoína/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Urato Oxidasa/genética , Urato Oxidasa/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Salinidad , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
8.
J Fluoresc ; 33(6): 2403-2414, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37084063

RESUMEN

A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant "turn-on" emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F- into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10-9 M and 104 M-1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).


Asunto(s)
Aluminio , Colorantes Fluorescentes , Aluminio/metabolismo , Cationes , Microscopía Fluorescente/métodos , Cumarinas , Espectrometría de Fluorescencia/métodos
9.
Sci Rep ; 12(1): 16233, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171247

RESUMEN

Marker-assisted breeding and tagging of important quantitative trait loci for beneficial traits are two important strategies for the genetic improvement of plants. However, the scarcity of diverse and informative genetic markers covering the entire tea genome limits our ability to achieve such goals. In the present study, we used a comparative genomic approach to mine the tea genomes of Camellia sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS) to identify the markers to differentiate tea genotypes. In our study, 43 and 60 Camellia sinensis miniature inverted-repeat transposable element (CsMITE) families were identified in these two sequenced tea genomes, with 23,170 and 37,958 putative CsMITE sequences, respectively. In addition, we identified 4912 non-redundant, Camellia sinensis intron length polymorphic (CsILP) markers, 85.8% of which were shared by both the CSS and CSA genomes. To validate, a subset of randomly chosen 10 CsMITE markers and 15 CsILP markers were tested and found to be polymorphic among the 36 highly diverse tea genotypes. These genome-wide markers, which were identified for the first time in tea plants, will be a valuable resource for genetic diversity analysis as well as marker-assisted breeding of tea genotypes for quality improvement.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Elementos Transponibles de ADN/genética , Marcadores Genéticos , Humanos , Intrones/genética , Fitomejoramiento ,
10.
Phys Chem Chem Phys ; 24(35): 20941-20952, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36053209

RESUMEN

A new ratiometric fluorescent probe (E)-2-(benzo[d]thiazol-2-yl)-3-(8-methoxyquinolin-2-yl)acrylonitrile (HQCN) was synthesised by the perfect blending of quinoline and a 2-benzothiazoleacetonitrile unit. In a mixed aqueous solution, HQCN reacts with hydrazine (N2H4) to give a new product 2-(hydrazonomethyl)-8-methoxyquinoline along with the liberation of the 2-benzothiazoleacetonitrile moiety. In contrast, the reaction of hypochlorite ions (OCl-) with the probe gives 8-methoxyquinoline-2-carbaldehyde. In both cases, the chemodosimetric approaches of hydrazine and hypochlorite selectively occur at the olefinic carbon but give two different products with two different outputs, as observed from the fluorescence study exhibiting signals at 455 nm and 500 nm for hydrazine and hypochlorite, respectively. A UV-vis spectroscopy study also depicts a distinct change in the spectrum of HQCN in the presence of hydrazine and hypochlorite. The hydrazinolysis of HQCN exhibits a prominent chromogenic as well as ratiometric fluorescence change with a 165 nm left-shift in the fluorescence spectrum. Similarly, the probe in hand (HQCN) can selectively detect hypochlorite in a ratiometric manner with a shift of 120 nm, as observed from the fluorescence emission spectra. HQCN can detect hydrazine and OCl- as low as 2.25 × 10-8 M and 3.46 × 10-8 M, respectively, as evaluated from the fluorescence experiments again. The excited state behaviour of the probe HQCN and the chemodosimetric products with hydrazine and hypochlorite are studied by the nanosecond time-resolved fluorescence technique. Computational studies (DFT and TDDFT) with the probe and the hydrazine and hypochlorite products were also performed. The observations made in the fluorescence imaging studies with human blood cells manifest that HQCN can be employed to monitor hydrazine and OCl- in human peripheral blood mononuclear cells (PBMCs). It is indeed a rare case that the single probe HQCN is found to be successfully able to detect hydrazine and hypochlorite in PBMCs, with two different outputs.


Asunto(s)
Ácido Hipocloroso , Leucocitos Mononucleares , Colorantes Fluorescentes/química , Humanos , Hidrazinas , Ácido Hipocloroso/química , Espectrometría de Fluorescencia
11.
Plants (Basel) ; 11(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893634

RESUMEN

The exploitation of heterosis through intersubspecific hybridisation between indica and japonica has been a major breeding target in rice, but is marred by the cross incompatibility between the genomes. Wide compatibility (WC) is a triallelic system at the S5 locus on chromosome 6 that ensures the specificity of hybridisation within and between indica and japonica. The S5n allele that favours intercrossing is sparsely distributed in the rice gene pool and therefore warrants identification of diverse WC sources to develop superior intersubspecific hybrids. In this study, we have identified several novel WC sources through the marker-assisted screening of a large set of 950 rice genotypes. Seventeen percent of the genotypes carried S5n, which fell into two subpopulations. The WC genotypes showed wide phenotypic and genotypic variability, including both indica and japonica lines. Based on phenotypic performance, the WC varieties were grouped into three clusters. A subset of 41 WC varieties was used to develop 164 hybrids, of which WC/japonica hybrids showed relative superiority over WC/indica hybrids. The multilocation evaluation of hybrids indicated that hybrids derived from WC varieties, such as IRG137, IRG143, OYR128, and IRGC10658, were higher yielding across all the three different locations. Most of the hybrids showed the stability of performance across locations. The identified diverse set of wide compatible varieties (WCVs) can be used in the development of intersubspecific hybrids and also for parental line development in hybrid rice breeding.

12.
Genomics ; 114(5): 110436, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35902069

RESUMEN

Black rice is famous for containing high anthocyanin while Joha rice is aromatic with low anthocyanin containing rice from the North-Eastern Region (NER) of India. However, there are limited reports on the anthocyanin biosynthesis in Manipur Black rice. Therefore, the present study was aimed to understand the origin, domestication and anthocyanin biosynthesis pathways in Black rice using the next generation sequencing approaches. With the sequencing data, various analyses were carried out for differential expression and construction of a pan-genome. Protein coding RNA and small RNA sequencing analysis aided in determining 7415 and 131 differentially expressed transcripts and miRNAs, respectively in NER rice. This is the first extensive study on identification and expression analysis of miRNAs and their target genes in regulating anthocyanin biosynthesis in NER rice. This study will aid in better understanding for decoding the theory of high or low anthocyanin content in different rice genotypes.


Asunto(s)
MicroARNs , Oryza , Antocianinas , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genómica , India , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Oryza/metabolismo , Transcriptoma
13.
Physiol Plant ; 174(4): e13736, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35716004

RESUMEN

Deepwater is an abiotic stress that limits rice cultivation worldwide due to recurrent floods. The miRNAs and lncRNAs are two non-coding RNAs emerging as major regulators of gene expressions under different abiotic stresses. However, the regulation of these two non-coding RNAs under deepwater stress in rice is still unexplored. In this study, small RNA-seq and RNA-seq from internode and node tissues were analyzed to predict deepwater stress responsive miRNAs and lncRNAs, respectively. Additionally, a competitive endogenous RNA (ceRNA) study revealed about 69 and 25 lncRNAs acting as endogenous target mimics (eTM) with the internode and node miRNAs, respectively. In ceRNA analyses, some of the key miRNAs such as miR1850.1, miR1848, and IN-nov-miR145 were upregulated while miR159e was downregulated, and their respective eTM lncRNAs and targets were found to have opposite expressions. Moreover, we have transiently expressed one module (IN-nov-miR145-Cc-TCONS_00011544-Os11g36430.3) in tobacco leaves. The integrated analysis has identified differentially expressed (DE) miRNAs, lncRNAs and their target genes, and the complex regulatory network, which might lead to stem elongation under deepwater stress. In this novel attempt to identify and characterize miRNAs and lncRNAs under deepwater stress in rice, we have provided, probably for the first time, a reference platform to study the interactions of these two non-coding RNAs with respective target genes through transient expression analyses.


Asunto(s)
MicroARNs , Oryza , ARN Largo no Codificante , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , Oryza/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
14.
J Biomol Struct Dyn ; 40(7): 2893-2907, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33179569

RESUMEN

A multi-omics-based approach targeting the plant-based natural products from Thumbai (Leucas aspera), an important yet untapped potential source of many therapeutic agents for myriads of immunological conditions and genetic disorders, was conceptualized to reconnoiter its potential biomedical application. A library of 79 compounds from this plant was created, out of which 9 compounds qualified the pharmacokinetics parameters. Reverse pharmacophore technique for target fishing of the screened compounds was executed through which renin receptor (ATP6AP2) and thymidylate kinase (DTYMK) were identified as potential targets. Network biology approaches were used to comprehend and validate the functional, biochemical and clinical relevance of the targets. The target-ligand interaction and subsequent stability parameters at molecular scale were investigated using multiple strategies including molecular modeling, pharmacophore approaches and molecular dynamics simulation. Herein, isololiolide and 4-hydroxy-2-methoxycinnamaldehyde were substantiated as the lead molecules exhibiting comparatively the best binding affinity against the two putative protein targets. These natural lead products from L. aspera and the combinatorial effects may have plausible medical applications in a wide variety of neurodegenerative, genetic and developmental disorders. The lead molecules also exhibit promising alternative in diagnostics and therapeutics through immuno-modulation targeting natural killer T-cell function in transplantation-related pathogenesis, autoimmune and other immunological disorders.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Productos Biológicos , Células T Asesinas Naturales , Productos Biológicos/farmacología , Lamiaceae , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
15.
Bioinformatics ; 38(2): 318-324, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34601584

RESUMEN

MOTIVATION: Tea is a cross-pollinated woody perennial plant, which is why, application of conventional breeding is limited for its genetic improvement. However, lack of the genome-wide high-density SNP markers and genome-wide haplotype information has greatly hampered the utilization of tea genetic resources toward fast-track tea breeding programs. To address this challenge, we have generated a first-generation haplotype map of tea (Tea HapMap-1). Out-crossing and highly heterozygous nature of tea plants, make them more complicated for DNA-level variant discovery. RESULTS: In this study, whole genome re-sequencing data of 369 tea genotypes were used to generate 2,334,564 biallelic SNPs and 1,447,985 InDels. Around 2928.04 million paired-end reads were used with an average mapping depth of ∼0.31× per accession. Identified polymorphic sites in this study will be useful in mapping the genomic regions responsible for important traits of tea. These resources lay the foundation for future research to understand the genetic diversity within tea germplasm and utilize genes that determine tea quality. This will further facilitate the understanding of tea genome evolution and tea metabolite pathways thus, offers an effective germplasm utilization for breeding the tea varieties. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Haplotipos , Proyecto Mapa de Haplotipos , Fitomejoramiento , , Genoma de Planta
16.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34734232

RESUMEN

In recent years, microRNAs (miRNAs) and tRNA-derived RNA fragments (tRFs) have been reported extensively following different approaches of identification and analysis. Comprehensively analyzing the present approaches to overcome the existing variations, we developed a benchmarking methodology each for the identification of miRNAs and tRFs, termed as miRNA Prediction Methodology (miRPreM) and tRNA-induced small non-coding RNA Prediction Methodology (tiRPreM), respectively. We emphasized the use of respective genome of organism under study for mapping reads, sample data with at least two biological replicates, normalized read count support and novel miRNA prediction by two standard tools with multiple runs. The performance of these methodologies was evaluated by using Oryza coarctata, a wild rice species as a case study for model and non-model organisms. With organism-specific reference genome approach, 98 miRNAs and 60 tRFs were exclusively found. We observed high accuracy (13 out of 15) when tested these genome-specific miRNAs in support of analyzing the data with respective organism. Such a strong impact of miRPreM, we have predicted more than double number of miRNAs (186) as compared with the traditional approaches (79) and with tiRPreM, we have predicted all known classes of tRFs within the same small RNA data. Moreover, the methodologies presented here are in standard form in order to extend its applicability to different organisms rather than restricting to plants. Hence, miRPreM and tiRPreM can fulfill the need of a comprehensive methodology for miRNA prediction and tRF identification, respectively, for model and non-model organisms.


Asunto(s)
MicroARNs , MicroARNs/genética , Plantas/genética , ARN de Transferencia/genética
17.
Plant Sci ; 308: 110878, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34034879

RESUMEN

Oryza coarctata is an obligate halophyte of wild species of rice which thrives well under high saline as well as submerged conditions. We report here for the first time that O. coarctata is triploid (2n = 3x = 36), though it was previously known as tetraploid (2n = 4x = 48). The chromosome number of O. coarctata was determined from mitotic plates of root tips and ploidy level was determined by flow cytometer, where it was found to be triploid (2n = 3x = 36). In addition, this species was found to possess several unique anatomical features in leaves such as presence of Kranz-anatomy, increased vein density and higher ratio of bundle sheath to mesophyll cell area as compared to rice variety (IR-29). Ultra-structure of leaf showed the presence of bundle sheath cells with significant number of chloroplasts and mitochondria which were arranged centrifugally. Chloroplasts lack grana in bundle sheath cell whereas, mesophyll cell contain well-developed grana. These anatomical and ultra structural characteristics indicate that this plant is in initial stage of evolving towards C4 photosynthesis due to high selection pressure which might help it to survive in wide range of ecological conditions i.e. from submerged saline to non-saline terrestrial condition.


Asunto(s)
Evolución Biológica , Ciclo del Carbono , Oryza/anatomía & histología , Fotosíntesis , Triploidía , Oryza/genética , Hojas de la Planta/anatomía & histología
18.
Sci Rep ; 11(1): 8679, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883595

RESUMEN

Three gene families in plants viz. Argonaute (AGOs), Dicer-like (DCLs) and RNA dependent RNA polymerase (RDRs) constitute the core components of small RNA mediated gene silencing machinery. The present study endeavours to identify members of these gene families in tea and to investigate their expression patterns in different tissues and various stress regimes. Using genome-wide analysis, we have identified 18 AGOs, 5 DCLs and 9 RDRs in tea, and analyzed their phylogenetic relationship with orthologs of Arabidopsis thaliana. Gene expression analysis revealed constitutive expression of CsAGO1 in all the studied tissues and stress conditions, whereas CsAGO10c showed most variable expression among all the genes. CsAGO10c gene was found to be upregulated in tissues undergoing high meristematic activity such as buds and roots, as well as in Exobasidium vexans infected samples. CsRDR2 and two paralogs of CsAGO4, which are known to participate in biogenesis of hc-siRNAs, showed similarities in their expression levels in most of the tea plant tissues. This report provides first ever insight into the important gene families involved in biogenesis of small RNAs in tea. The comprehensive knowledge of these small RNA biogenesis purveyors can be utilized for tea crop improvement aimed at stress tolerance and quality enhancement.


Asunto(s)
Proteínas Argonautas/genética , Camellia sinensis/genética , Proteínas de Ciclo Celular/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo , Filogenia
19.
Physiol Mol Biol Plants ; 27(2): 369-385, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33707875

RESUMEN

Chitinases are a diverse group of enzymes having the ability to degrade chitin. Chitin is the second most abundant polysaccharide on earth, predominantly found in insect exoskeletons and fungal cell walls. In this study, we performed a genome-wide search for chitinase genes and identified a total of 49 chitinases in tea. These genes were categorized into 5 classes, where an expansion of class V chitinases has been observed in comparison to other plant species. Extensive loss of introns in 46% of the GH18 chitinases indicates that an evolutionary pressure is acting upon these genes to lose introns for rapid gene expression. The promoter upstream regions in 65% of the predicted chitinases contain methyl-jasmonate, salicylic acid and defense responsive cis-acting elements, which may further illustrate the possible role of chitinases in tea plant's defense against various pests and pathogens. Differential expression analysis revealed that transcripts of two GH19 chitinases TEA028279 and TEA019397 got upregulated during three different fungal infections in tea. While GH19 chitinase TEA031377 showed an increase in transcript abundance in the two insect infested tea tissues. Semi-quantitative RT-PCR analysis revealed that five GH19 chitinases viz. TEA018892, TEA031484, TEA28279, TEA033470 and TEA031277 showed significant increase in expression in the tea plants challenged with a biotrophic pathogen Exobasidium vexans. The study endeavours in highlighting biotic stress responsive defensive role of chitinase genes in tea.

20.
Mol Biol Rep ; 48(3): 2261-2271, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33742326

RESUMEN

Salinity adversely affects the yield and growth of rice (Oryza sativa L.) plants severely, particularly at reproductive stage. Long non-coding RNAs (lncRNAs) are key regulators of diverse molecular and cellular processes in plants. Till now, no systematic study has been reported for regulatory roles of lncRNAs in rice under salinity at reproductive stage. In this study, total 80 RNA-seq data of Horkuch (salt-tolerant) and IR-29 (salt-sensitive) genotypes of rice were used and found 1626 and 2208 transcripts as putative high confidence lncRNAs, among which 1529 and 2103 were found to be novel putative lncRNAs in root and leaf tissue respectively. In Horkuch and IR-29, 14 and 16 lncRNAs were differentially expressed in root tissue while 18 and 63 lncRNAs were differentially expressed in leaf tissue. Interaction analysis among the lncRNAs, miRNAs and corresponding mRNAs indicated that these modules are involved in different biochemical pathways e.g. phenyl propanoid pathway during salinity stress in rice. Interestingly, two differentially expressed lncRNAs such as TCONS_00008914 and TCONS_00008749 were found as putative target mimics of known rice miRNAs. This study indicates that lncRNAs are involved in salinity adaptation of rice at reproductive stage through certain biochemical pathways.


Asunto(s)
Oryza/genética , Oryza/fisiología , ARN Largo no Codificante/genética , Estrés Salino/genética , Exones/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/genética , Raíces de Plantas/genética , Propanoles/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reproducción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...