Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 17625, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077756

RESUMEN

Although cells of mushroom-producing fungi typically contain paired haploid nuclei (n + n), most Armillaria gallica vegetative cells are uninucleate. As vegetative nuclei are produced by fusions of paired haploid nuclei, they are thought to be diploid (2n). Here we report finding haploid vegetative nuclei in A. gallica at multiple sites in southeastern Massachusetts, USA. Sequencing multiple clones of a single-copy gene isolated from single hyphal filaments revealed nuclear heterogeneity both among and within hyphae. Cytoplasmic bridges connected hyphae in field-collected and cultured samples, and we propose nuclear migration through bridges maintains this nuclear heterogeneity. Growth studies demonstrate among- and within-hypha phenotypic variation for growth in response to gallic acid, a plant-produced antifungal compound. The existence of both genetic and phenotypic variation within vegetative hyphae suggests that fungal individuals have the potential to evolve within a single generation in response to environmental variation over time and space.


Asunto(s)
Armillaria/genética , Evolución Biológica , Hifa/genética , Esporas Fúngicas/genética , Núcleo Celular/genética , Citoplasma/genética , Diploidia
2.
J Neurosci ; 40(34): 6503-6521, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32661024

RESUMEN

Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex.SIGNIFICANCE STATEMENT We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/crecimiento & desarrollo , Microglía/fisiología , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Capilares/crecimiento & desarrollo , Capilares/ultraestructura , Corteza Cerebral/ultraestructura , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Microglía/ultraestructura , Corteza Somatosensorial/metabolismo
3.
Nat Neurosci ; 22(7): 1075-1088, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209379

RESUMEN

Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.


Asunto(s)
Proteína ADAM10/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Receptor 1 de Quimiocinas CX3C/fisiología , Quimiocina CX3CL1/fisiología , Proteínas de la Membrana/fisiología , Microglía/fisiología , Corteza Sensoriomotora/fisiopatología , Tacto/fisiología , Vibrisas/lesiones , Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Receptor 1 de Quimiocinas CX3C/deficiencia , Receptor 1 de Quimiocinas CX3C/genética , Recuento de Células , Femenino , Regulación de la Expresión Génica , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas Analíticas Microfluídicas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Corteza Sensoriomotora/metabolismo , Corteza Sensoriomotora/patología , Transducción de Señal/fisiología , Análisis de la Célula Individual , Transcriptoma , Vibrisas/fisiología
4.
J Huntingtons Dis ; 7(4): 309-319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320596

RESUMEN

BACKGROUND: Transgenic sheep are currently the only large animal model of Huntington's disease expressing full-length mutant human huntingtin. These transgenic sheep provide an opportunity to test adeno associated virus (AAV) therapies directly targeting the huntingtin gene. A recent study demonstrated that self-complementary (sc) AAV with artificial miRNA against human huntingtin reduced mutant human huntingtin in caudate and putamen after a single injection near the internal capsule. OBJECTIVE: To identify an AAV serotype among AAVrh8, AAV9 and AAVrh10 with the highest neuronal uptake and distribution, with no obvious cell loss in the neostriatum of the sheep. METHODS: We tested AAVrh8, AAV9 and AAVrh10 by stereotactic direct unilateral injection into the neostriatum of sheep, near the internal capsule. Four weeks after administration, we examined the viral spread and neuronal uptake of each serotype of AAV containing GFP. We compared single stranded (ss) and scAAVs. Further, we measured the distribution of AAVrh8 and AAV9 to a variety of tissues outside the brain. RESULTS: Sc AAV9 had the best combination of neuronal uptake and distribution throughout the neostriatum. scAAVrh10 demonstrated good spread, but was not taken up by neurons. scAAVrh8 demonstrated good spread, but had less neuronal uptake than AAV9. Six hours after convection-enhanced administration to the neostriatum, both AAVrh8 and AAV9 viral genomes were detected in blood, saliva, urine, feces and wool. By four weeks, viral genomes were detected in wool only. Administration of AAVrh8, AAV9 and AAVrh10 was not associated with loss of neostriatal, medium spiny neuron number as measured by DARPP32 immunohistochemistry. CONCLUSIONS: Altogether, we found scAAV9 had the best neuronal uptake and spread, showed no loss of neurons at one-month post-injection, and was not measurable in body fluids one month after injection. This information will guide future clinical experiments requiring brain injection of AAV for therapeutics for gene or miRNA deliveries in sheep transgenic for the human huntingtin gene.


Asunto(s)
Núcleo Caudado/virología , Dependovirus/genética , Proteína Huntingtina/genética , Neuronas/virología , Putamen/virología , Internalización del Virus , Animales , Animales Modificados Genéticamente , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/sangre , Vectores Genéticos/orina , Genoma Viral , Proteínas Fluorescentes Verdes/genética , Humanos , Cápsula Interna , Masculino , Neostriado/virología , Serogrupo , Ovinos , Oveja Doméstica , Lana/virología
5.
Hum Gene Ther ; 29(6): 663-673, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29207890

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT, but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. AAV9 was used to deliver unilaterally to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters: U6 or CßA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at 1 and 6 months post injection. Silencing was detectable in both the caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at 6 months after treatment, and Iba1-positive microglia were detected at control levels. It is concluded that safe and effective silencing of human mHTT protein can be achieved and sustained in a large-animal brain by direct delivery of an AAV carrying an artificial miRNA.


Asunto(s)
Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , MicroARNs/metabolismo , Proteínas Mutantes/metabolismo , Neostriado/metabolismo , Animales , Animales Modificados Genéticamente , Dependovirus/genética , Modelos Animales de Enfermedad , Electrólitos/metabolismo , Vectores Genéticos/metabolismo , Genoma Viral , Humanos , Inmunoensayo , Inyecciones , Riñón/fisiopatología , Hígado/fisiopatología , MicroARNs/genética , Microglía/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ovinos
6.
J Huntingtons Dis ; 4(3): 219-229, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26444021

RESUMEN

BACKGROUND: The immune system In Huntington's disease (HD) is activated and may overreact to some therapies. RNA interference using siRNA lowers mutant huntingtin (mHTT) protein but could increase immune responses. OBJECTIVE: To examine the innate immune response following siRNA infusion into the striatum of wild-type (WT) and HD transgenic (YAC128) mice. METHODS: siRNAs (2'-O-methyl phosphorothioated) were infused unilaterally into striatum of four month-old WT and YAC128 mice for 28 days. Microglia number and morphology (resting (normal), activated, dystrophic), cytokine levels, and DARPP32-positive neurons were measured in striatum immediately or 14 days post-infusion. Controls included contralateral untreated striatum, and PBS and sham treated striata. RESULTS: The striata of untreated YAC128 mice had significantly fewer resting microglia and more dystrophic microglia than WT mice, but no difference from WT in the proportion of activated microglia or total number of microglia. siRNA infusion increased the total number of microglia in YAC128 mice compared to PBS treated and untreated striata and increased the proportion of activated microglia in WT and YAC128 mice compared to untreated striata and sham treated groups. Cytokine levels were low and siRNA infusion resulted in only modest changes in those levels. siRNA infusion did not change the number of DARPP32-positive neurons. CONCLUSION: Findings suggest that siRNA infusion may be a safe method for lowering mHTT levels in the striatum in young animals, since treatment does not produce a robust cytokine response or cause neurotoxicity. The potential long-term effects of a sustained increase in total and activated microglia after siRNA infusion in HD mice need to be explored.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/inmunología , Inmunidad Innata/inmunología , ARN Interferente Pequeño/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/tratamiento farmacológico , Ratones , Ratones Transgénicos , ARN Interferente Pequeño/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...