Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasitol Res ; 121(7): 2065-2078, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35524789

RESUMEN

The invasive nature of Toxoplasma gondii is closely related to the properties of its cytoskeleton, which is constituted by a group of diverse structural and dynamic components that play key roles during the infection. Even if there have been numerous reports about the composition and function of the Toxoplasma cytoskeleton, the ultrastructural organization of some of these components has not yet been fully characterized. This study used a detergent extraction process and several electron microscopy contrast methods that allowed the successful isolation of the cytoskeleton of Toxoplasma tachyzoites. This process allowed for the conservation of the structures known to date and several new structures that had not been characterized at the ultrastructural level. For the first time, characterization was achieved for a group of nanofibers that allow the association between the polar apical ring and the conoid as well as the ultrastructural characterization of the apical cap of the parasite. The ultrastructure and precise location of the peripheral rings were also found, and the annular components of the basal complex were characterized. Finally, through immunoelectron microscopy, the exact spatial location of the subpellicular network inside the internal membrane system that forms the pellicle was found. The findings regarding these new structures contribute to the knowledge concerning the biology of the Toxoplasma gondii cytoskeleton. They also provide new opportunities in the search for therapeutic strategies aimed at these components with the purpose of inhibiting invasion and thus parasitism.


Asunto(s)
Toxoplasma , Citoesqueleto/ultraestructura , Microscopía Electrónica , Microscopía Inmunoelectrónica , Microtúbulos , Toxoplasma/ultraestructura
2.
J Proteomics ; 237: 104146, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588107

RESUMEN

Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.


Asunto(s)
Toxoplasma , Actinas , Membrana Celular , Proteómica , Proteínas Protozoarias
3.
Cell Microbiol ; 23(3): e13283, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33108050

RESUMEN

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Asunto(s)
Uniones Intercelulares/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Toxoplasma/fisiología , Animales , Cadherinas/metabolismo , Claudina-1/metabolismo , Proteínas del Citoesqueleto/metabolismo , Perros , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Hidrazonas/farmacología , Uniones Intercelulares/ultraestructura , Células de Riñón Canino Madin Darby , Metaloproteasas/metabolismo , Movimiento , Naftoles/farmacología , Ocludina/metabolismo , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Proteína de la Zonula Occludens-1/metabolismo
4.
Saudi J Biol Sci ; 27(3): 812-819, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32127756

RESUMEN

The apicomplexan parasite Toxoplasma gondii (T. gondii) causes toxoplasmosis in humans. Pyrimethamine and sulfadiazine that are the drugs of choice to treat the disease, produce severe side effects as well as failure treatments because of drug resistance; thus, novel anti-Toxoplasma compounds are needed and natural compounds can be a good source to obtain them, as medicinal plants have been used to control other apicomplexan parasites. Pleopeltis crassinervata (P. crassinervata) is a fern used in some rural areas of Mexico to treat among other malaises, mouth ulcers, gastrointestinal problems and parasites. Therefore, the efficacy of extracts and fractions obtained from P. crassinervata fronds was evaluated on the viability of T. gondii RH strain tachyzoites by the Stytox green method. RH is the prototypical type 1 Toxoplasma strain, isolated for the first time from the brain of a patient boy named R. H. Its phytochemical profile, MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Hep-2 cytotoxicity and antioxidant activity by ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods, were also assessed. Hexane fraction exhibited the highest anti-Toxoplasma activity with an IC50 of 16.90 µg/mL. This fraction did not show antioxidant activity and contained at least 2 terpenoid type compounds with retention factor (Rf) of 0.75 and 0.86. The fraction was not toxic to the host cells in doses up to 50 µg/mL. P. crassinervata frond hexane fraction seems to be a good candidate to obtain possible anti-Toxoplasma compounds. This study is the first to report the biological, antioxidant and cytotoxic activity of P. crassinervata fern.

5.
J Proteomics ; 208: 103490, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31434009

RESUMEN

After the cell invasion, the parasite Toxoplasma gondii locates within a parasitophorous vacuole to proliferate. It continuously modifies the composition of the parasitophorous vacuole by the secretion of GRA and ROP proteins, some of which become inserted into the vacuole membrane, remain as soluble proteins or involved in the intravacuolar network. In this report, we analyze the excretion/secretion products and the vesicles released by extracellular tachyzoites, this structures were morphologically analyzed by electron microscopy and characterized by mass spectrometry. The structural analysis showed parasites secreting in vitro individual vesicles with similarities to ectosomes and exosomes and which characterized to self-assembly in vitro forming vesicle-tubular structures morphologically similar to the intravacuolar network from infected cells. The vesicle-tubular structures were recognized with antibodies against ROP2 and GRA2. In addition, analysis by Western blot evidenced proteins from the secretory organelles. A detailed proteomic analysis of exosomes, ectosomes and soluble proteins released in vitro is here reported. Presence of GRA proteins in secretions from resting extracellular parasites indicates that these molecules are not exclusively secreted within the parasitophorous vacuole of the infected cell as reported but they are constitutively excreted/secreted even in an extracellular condition. Data are available via ProteomeXchange with identifier PXD013767. SIGNIFICANCE: Extracellular tachyzoites constitutively secrete components that previously were considered be secreted only within the parasitophorous vacuole, suggesting that in the infected host these molecules are in direct interaction with cells and molecules of the host cell including those of the immune response.


Asunto(s)
Bases de Datos de Proteínas , Proteómica , Proteínas Protozoarias/metabolismo , Vesículas Secretoras/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos BALB C
6.
Parasitol Res ; 118(1): 289-306, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30506516

RESUMEN

Toxoplasma gondii can infect all nucleated cells from warm-blooded organisms. After infection, Toxoplasma spreads throughout the body and migrates across biological barriers, such as the intestinal and blood-brain barriers, as well as the placenta in pregnant women. The mechanisms for parasite dissemination are still unknown; however, proteases could play a role as a virulence factor. The aim of this study was to detect and to characterize proteases in whole-cell extracts and in excretion/secretion products from tachyzoites of the RH strain isolated from infected mice. Both fractions were analyzed by gelatin and casein zymography and by azocasein degradation. The biochemical characterization of proteases included standardization of optimal conditions for their activation, such as pH, the presence of cofactors, and a reducing agent. In both fractions, we detected at least nine gelatin-degrading metalloproteases in the range of 50 to 290 kDa. The proteases present in the excretion/secretion products were found as soluble proteins and not associated with exosome-like vesicles or other secretory vesicles. Moreover, by using casein zymography, it was possible to detect three serine proteases. Exposure of MDCK cells to excretion/secretion products modified the organization of the cell monolayer, and this effect was reverted after washing thoroughly with PBS and inhibition by metalloprotease and serine protease inhibitors. Proteomic analysis of excretion/secretion products identified 19 proteases. These findings suggest that tachyzoites of a highly virulent strain of Toxoplasma use a battery of proteases to modify the epithelium, probably as a strategy to facilitate their tissue dissemination.


Asunto(s)
Células Epiteliales/parasitología , Metaloproteasas/metabolismo , Proteínas Protozoarias/metabolismo , Serina Proteasas/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/parasitología , Animales , Femenino , Humanos , Metaloproteasas/genética , Ratones , Embarazo , Proteómica , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
7.
Parasitol Res ; 117(2): 547-563, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29308550

RESUMEN

The biochemical and structural changes that occur during the conversion of Toxoplasma gondii tachyzoites to bradyzoites and the formation of tissue cyst are not well understood. Maintaining cells infected with T. gondii type II and III strains under stress conditions induces the tachyzoite-bradyzoite in vitro differentiation, along with the formation of cyst-like structures. However, due to the long exposure to such conditions required to induce the differentiation, the severe damages in the host cell and the low encystation frequency, it has been difficult to dissect in more detail these processes. Here, we successfully induced the in vitro formation of Toxoplasma cysts-like structures from tachyzoites of the type I RH strain by treating with mycophenolic acid, an inhibitor of the inosine monophosphate dehydrogenase. Mycophenolic acid is a drug widely used for HXGPRT positive selection of Toxoplasma mutant strains along with xanthine incubation in the culture medium; under such conditions, formation of tissue cysts has not been reported. We show that the exposure of extracellular tachyzoites to mycophenolic acid in absence of xanthine, followed by host cell invasion, triggered their differentiation into cyst-like structures. The differential expression of CST1, BAG1, and SAG1 molecules, as well as the structural modifications of infected cells, was characterized during the formation of cyst-like structures in vitro. These findings will allow the characterization of signaling pathways involved in tachyzoite to bradyzoite conversion and formation of tissue cysts.


Asunto(s)
Ácido Micofenólico/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo , Diferenciación Celular/efectos de los fármacos , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal/efectos de los fármacos , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasmosis/parasitología
8.
Parasitol Res ; 115(5): 2081-96, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26888289

RESUMEN

Quinoxalinone derivatives, identified as VAM2 compounds (7-nitroquinoxalin-2-ones), were evaluated against Toxoplasma gondii tachyzoites of the RH strain. The VAM2 compounds were previously synthesized based on the design obtained from an in silico prediction with the software TOMOCOMD-CARDD. From the ten VAM2 drugs tested, several showed a deleterious effect on tachyzoites. However, VAM2-2 showed the highest toxoplasmicidal activity generating a remarkable decrease in tachyzoite viability (in about 91 %) and a minimal alteration in the host cell. An evident inhibition of host cell invasion by tachyzoites previously treated with VAM2-2 was observed in a dose-dependent manner. In addition, remarkable alterations were observed in the pellicle parasite, such as swelling, roughness, and blebbing. Toxoplasma motility was inhibited, and subpellicular cytoskeleton integrity was altered, inducing a release of its components to the soluble fraction. VAM2-2 showed a clear and specific deleterious effect on tachyzoites viability, structural integrity, and invasive capabilities with limited effects in host cells morphology and viability. VAM2-2 minimum inhibitory concentration (MIC50) was determined as 3.3 µM ± 1.8. Effects of quinoxalinone derivatives on T. gondii provide the basis for a future therapeutical alternative in the treatment of toxoplasmosis.


Asunto(s)
Quinoxalinas/farmacología , Toxoplasma/efectos de los fármacos , Animales , Línea Celular Tumoral , Citoesqueleto , Humanos , Ratones , Ratones Endogámicos BALB C , Toxoplasma/fisiología , Toxoplasma/ultraestructura , Toxoplasmosis/parasitología
9.
Virol J ; 13: 1, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26728778

RESUMEN

BACKGROUND: One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function. METHODS: We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes. RESULTS: The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes. CONCLUSIONS: Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Virus del Dengue/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas no Estructurales Virales/farmacología , Secuencia de Aminoácidos , Virus del Dengue/genética , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación
10.
Tuberculosis (Edinb) ; 89(1): 29-37, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19056316

RESUMEN

Due to the intracellular nature of mycobacterial infections, little attention has been paid to the possible extracellular role that neutrophils might play in tuberculosis. The recent discovery of neutrophil extracellular traps (NETs), composed of DNA and antimicrobial proteins,(1) introduces a new perspective to our understanding of the mechanism used by the innate immune system to contain and kill microorganisms. In this study, we tested in vitro whether Mycobacterium tuberculosis, an intracellular pathogen, can induce NETs formation and if this newly discovered mechanism is involved in a control response during mycobacterial infection. We found that two different genotypes of M. tuberculosis exerted, in vitro, a cytotoxic effect and induced subcellular changes on infected neutrophils, leading to NETs formation in a time dependent manner. NETs trapped mycobacteria but were unable to kill them. NETs formation induced by M. tuberculosis could help understand the early stages of mycobacterial pathogenesis.


Asunto(s)
Espacio Extracelular/inmunología , Mycobacterium tuberculosis/patogenicidad , Neutrófilos/fisiología , Tuberculosis/inmunología , Animales , Antibacterianos , ADN/análisis , Colorantes Fluorescentes , Genes Bacterianos , Genotipo , Humanos , Inmunidad Innata , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestructura , Neutrófilos/microbiología , Neutrófilos/ultraestructura , Fagocitosis , Coloración y Etiquetado , Tuberculosis/genética , Tuberculosis/patología , Factores de Virulencia/genética , Factores de Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...