Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16193043

RESUMEN

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Asunto(s)
Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Ecosistema , Agua de Mar/química , Ácidos/análisis , Animales , Antozoos/metabolismo , Atmósfera/química , Carbonato de Calcio/análisis , Carbonato de Calcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Océanos y Mares , Plancton/química , Plancton/metabolismo , Termodinámica , Factores de Tiempo , Incertidumbre
2.
Science ; 304(5676): 1463-6, 2004 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-15178792

RESUMEN

With increasing pressure for a more ecological approach to marine fisheries and environmental management, there is a growing need to understand and predict changes in marine ecosystems. Biogeochemical and physical oceanographic models are well developed, but extending these further up the food web to include zooplankton and fish is a major challenge. The difficulty arises because organisms at higher trophic levels are longer lived, with important variability in abundance and distribution at basin and decadal scales. Those organisms at higher trophic levels also have complex life histories compared to microbes, further complicating their coupling to lower trophic levels and the physical system. We discuss a strategy that builds on recent advances in modeling and observations and suggest a way forward that includes approaches to coupling across trophic levels and the inclusion of uncertainty.


Asunto(s)
Copépodos , Ecosistema , Biología Marina , Modelos Biológicos , Agua de Mar , Atún , Animales , Océano Atlántico , Clima , Copépodos/fisiología , Cadena Alimentaria , Predicción , Modelos Estadísticos , Océano Pacífico , Dinámica Poblacional , Atún/fisiología , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...