Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 22(11): e13977, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37675802

RESUMEN

Iron imbalance in the brain negatively affects brain function. With aging, iron levels increase in the brain and contribute to brain damage and neurological disorders. Changes in the cerebral vasculature with aging may enhance iron entry into the brain parenchyma, leading to iron overload and its deleterious consequences. Endothelial senescence has emerged as an important contributor to age-related changes in the cerebral vasculature. Evidence indicates that iron overload may induce senescence in cultured cell lines. Importantly, cells derived from female human and mice generally show enhanced senescence-associated phenotype, compared with males. Thus, we hypothesize that cerebral endothelial cells (CEC) derived from aged female mice are more susceptible to iron-induced senescence, compared with CEC from aged males. We found that aged female mice, but not males, showed cognitive deficits when chronically treated with ferric citrate (FC), and their brains and the brain vasculature showed senescence-associated phenotype. We also found that primary culture of CEC derived from aged female mice, but not male-derived CEC, exhibited senescence-associated phenotype when treated with FC. We identified that the transmembrane receptor Robo4 was downregulated in the brain vasculature and in cultured primary CEC derived from aged female mice, compared with those from male mice. We discovered that Robo4 downregulation contributed to enhanced vulnerability to FC-induced senescence. Thus, our study identifies Robo4 downregulation as a driver of senescence induced by iron overload in primary culture of CEC and a potential risk factor of brain vasculature impairment and brain dysfunction.


Asunto(s)
Senescencia Celular , Sobrecarga de Hierro , Ratones , Humanos , Animales , Masculino , Femenino , Anciano , Senescencia Celular/fisiología , Células Endoteliales , Envejecimiento , Hierro , Receptores de Superficie Celular
2.
Biomolecules ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36291606

RESUMEN

The mitochondrial translocator protein (TSPO) is a modulator of the apoptotic pathway involving reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) collapse, activation of caspases, and eventually initiation of the apoptotic process. In this in vitro study, H1299 lung cells and BV-2 microglial cells were exposed to the hypoxia-like effect of CoCl2 with or without PK 11195. Exposing the H1299 cells to 0.5 mM CoCl2 for 24 h resulted in decreases in cell viability (63%, p < 0.05), elevation of cardiolipin peroxidation levels (38%, p < 0.05), mitochondrial membrane potential depolarization (13%, p < 0.001), and apoptotic cell death (117%, p < 0.05). Pretreatment with PK 11195 (25 µM) exhibited significant protective capacity on CoCl2-induced alterations in the mentioned processes. Exposure of BV-2 cells to increasing concentrations of CoCl2 (0.3, 0.5, 0.7 mM) for 4 h resulted in alterations in the same cellular processes. These alterations were obtained in a dose-dependent manner, except the changes in caspases 3 and 9. The novel ligands as well as PK 1195 attenuated the in vitro hypoxia-like effects of CoCl2. It appears that the TSPO ligand PK 11195 can prevent CoCl2-induced cellular damage in both non-neuronal and brain cell lines, and they may offer a novel approach to the treatment of hypoxia-related lung and brain diseases in some cases that fail to respond to conventional therapies.


Asunto(s)
Apoptosis , Cardiolipinas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Cardiolipinas/metabolismo , Ligandos , Caspasas/metabolismo , Supervivencia Celular , Línea Celular , Hipoxia , Hipoxia de la Célula , Encéfalo/metabolismo , Pulmón/metabolismo , Receptores de GABA/metabolismo
3.
J Fungi (Basel) ; 8(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35330323

RESUMEN

Macrophages are some of the most important immune cells in the organism and are responsible for creating an inflammatory immune response in order to inhibit the passage of microscopic foreign bodies into the blood stream. Sometimes, their activation can be responsible for chronic inflammatory diseases such as asthma, tuberculosis, hepatitis, sinusitis, inflammatory bowel disease, and viral infections. Prolonged inflammation can damage the organs or may lead to death in serious conditions. In the present study, RAW264.7 macrophages were exposed to lipopolysaccharide (LPS; 20 ng/mL) and simultaneously treated with 20 µg/mL of natural-based formulation (NBF), mushroom-cannabidiol extract). Pro-inflammatory cytokines, chemokines, and other inflammatory markers were analyzed. The elevations in the presence of interleukin-6 (IL-6), cycloxygenase-2 (COX-2), C-C motif ligand-5 (CCL5), and nitrite response, following exposure to LPS, were completely inhibited by NBF administration. IL-1ß and tumor necrosis factor alpha (TNF-α) release were inhibited by 3.9-fold and 1.5-fold, respectively. No toxic effect of NBF, as assessed by lactate dehydrogenase (LDH) release, was observed. Treatment of the cells with NBF significantly increased the mRNA levels of TLR2, and TLR4, but not NF-κB. Thus, it appears that the NBF possesses anti-inflammatory and immunomodulatory effects which can attenuate the release of pro-inflammatory markers. NBF may be a candidate for the treatment of acute and chronic inflammatory diseases and deserves further investigation.

4.
Biology (Basel) ; 10(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34827176

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder which is characterized by the degeneration of dopaminergic neurons in substantia nigra (SN). Oxidative stress or reactive oxygen species (ROS) generation was suggested to play a role in this specific type of neurodegeneration. Therapeutic options which can target and counteract ROS generation may be of benefit. TSPO ligands are known to counteract with neuro-inflammation, ROS generation, apoptosis, and necrosis. In the current study, we investigated an in vitro cellular PD model by the assessment of 6-hydroxydopamine (6-OHDA, 80 µM)-induced PC12 neurotoxicity. Simultaneously to the exposure of the cells to 6-OHDA, we added the TSPO ligands CB86 and CB204 (25 µM each) and assessed the impact on several markers of cell death. The two ligands normalized significantly (57% and 52% respectively, from 44%; whereas the control was 68%) cell proliferation at different time points from 0-24 h. Additionally, we evaluated the effect of these two TSPO ligands on necrosis using propidium iodide (PI) staining and found that the ligands inhibited significantly the 6-OHDA-induced necrosis. As compared to control, the red count was increased up to 57-fold whereas CB86 and CB204 inhibited to 2.7-fold and 3.2-fold respectively. Necrosis was also analyzed by LDH assay which showed significant effect. Both assays demonstrated similar potent anti-necrotic effect of the two TSPO ligands. Reactive oxygen species (ROS) generation induced by 6-OHDA was also inhibited by the two TSPO ligand up to 1.3 and 1.5-fold respectively, as compared to 6-OHDA group. CB86 and CB204 inhibited also normalized the cell viability up to 1.8-fold after the exposure to 6-OHDA, as assessed by XTT assay. The two TSPO ligands also inhibited apoptosis significantly (1.3-fold for both) as assessed by apopxin green staining. In summary, it appears that the two TSPO ligands CB86 and CB204 can suppress cell death of PC12 induced by 6-OHDA. The results may be relevant to the use of these two TSPO ligands as therapeutic option neurodegenerative diseases like PD.

5.
Biology (Basel) ; 9(9)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32938018

RESUMEN

The impact of ligands of the 18 kDa translocator protein (TSPO) on the release of chemokines is not vastly investigated. In the present study, we assessed the effect of our novel TSPO ligands 2-Cl-MGV-1 and 2,4-Di-Cl-MGV-1 compared to the classical TSPO ligand PK 11195 on chemokine release in LPS-stimulated BV-2 microglial cells. As per the effect of 2-Cl-MGV-1, CCL2, CCL3, and CCL5 were inhibited by 90%, CCL8 by 97%, and IL-2 by 77% (p < 0.05 for all). 2,4-Di-Cl-MGV-1 inhibited CCL2 release by 92%, CCL3 by 91%, CCL5 by 90%, CCL8 by 89%, and IL-2 by 80% (p < 0.05 for all). PK 11195 exhibited weaker inhibitory effects: CCL2 by 22%, CCL3 by 83%, CCL5 by 34%, CCL8 by 41%, and the cytokine IL-2 by 14% (p < 0.05 for all). Thus, it appears that the novel TSPO ligands are potent suppressors of LPS-stimulated BV-2 microglial cells, and their inhibitory effect is larger than that of PK 11195. Such immunomodulatory effects on microglial cells may be relevant to the treatment of neurodegenerative and neuroinflammatory diseases.

6.
Brain Behav Immun Health ; 5: 100083, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34589858

RESUMEN

We have shown previously, that the 18 â€‹kDa translocator protein (TSPO) synthetic ligands quinazoline derivatives (2-Cl-MGV-1 and MGV-1) can inhibit activation of in BV-2 microglial cells. In the present study we assessed the impact of novel TSPO ligands on lipopolysaccharide (LPS)-induced microglial activation as expressed by release of pro-inflammatory molecules, including cytokines [interleukin-6 (IL-6), IL-1ß, interferon- γ (IFN-γ)] nitric oxide (NO), CD8, and cyclo-oxygenase-2 (COX-2). The TSPO ligands 2,4-Di-Cl-MGV-1, CB86, and CB204 counteracted with the LPS-induced microglial activation. Exposure to LPS along with the TSPO ligand 2,4-Di-Cl-MGV-1 (25 â€‹µM) reduced significantly the release of NO by 24-, IL-6 by 14-, IL-ß by 14-, IFN- γ by 6-, and TNF-α by 29-folds, respectively. In contrast to the anti-neuroinflammatory effect of the TSPO ligands, the effect of diclofenac sodium (DS; 25 â€‹µM) did not reach statistical significance. No alterations in IL-10 and IL-13 were detected (M2 anti-inflammatory pathway) during the inhibition of M1 pro-inflammatory pathway.

7.
Cells ; 8(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121852

RESUMEN

The 18 kDa translocator protein (TSPO) ligands 2-Cl-MGV-1 and MGV-1 can attenuate cell death of astrocyte-like cells (U118MG) and induce differentiation of neuronal progenitor cells (PC-12). Lipopolysaccharide (LPS) is a bacterial membrane endotoxin that activates cellular inflammatory pathways by releasing pro-inflammatory molecules, including cytokines and chemokines. The aim of the present study was to assess the immuno-modulatory effect of TSPO ligands in activated microglial cells. We demonstrated that the TSPO ligands 2-Cl-MGV-1 and MGV-1 can prevent LPS-induced activation of microglia (BV-2 cell line). Co-treatment of LPS (100 ng/mL) with these TSPO ligands (final concentration- 25 µM) reduces significantly the LPS-induced release of interleukin-6 (IL-6) from 16.9-fold to 2.5-fold, IL-ß from 8.3-fold to 1.6-fold, interferon-γ from 16.0-fold to 2.2-fold, and tumor necrosis factor-α from 16.4-fold to 1.8-fold. This anti-inflammatory activity seems to be achieved by inhibition of NF-κB p65 activation. Assessment of initiation of ROS generation and cell metabolism shows significant protective effects of these two novel TSPO ligands. The IL-10 and IL-13 levels were not affected by any of the TSPO ligands. Thus, it appears that the ligands suppress the LPS-induced activation of some inflammatory responses of microglia. Such immunomodulatory effects may be relevant to the pharmacotherapy of neuro-inflammatory diseases.


Asunto(s)
Carbamatos/farmacología , Citocinas/metabolismo , Inflamación/inmunología , Microglía/efectos de los fármacos , Microglía/inmunología , Quinazolinas/farmacología , Receptores de GABA/metabolismo , Animales , Carbamatos/metabolismo , Línea Celular , Inflamación/inducido químicamente , Ligandos , Lipopolisacáridos/química , Microglía/citología , Quinazolinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...