Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 129, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643099

RESUMEN

The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA operon number. In summary, this study provides novel empirical data that enriches the comprehension of the Bradyrhizobium (slow) growth dynamics and cell cycle.


Asunto(s)
Bradyrhizobium , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Glycine max , Fenómenos Fisiológicos Celulares , Fenotipo , Simbiosis
2.
Microbiol Spectr ; 9(3): e0056921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34762518

RESUMEN

Microbial genomes are being extensively studied using next-generation sequencing technologies in order to understand the changes that occur under different selection regimes. In this work, the number and type of mutations that have occurred in three Bradyrhizobium diazoefficiens USDA 110T strains under laboratory conditions and during selection for a more motile phenotypic variant were analyzed. Most of the mutations found in both processes consisted of single nucleotide polymorphisms, single nucleotide deletions or insertions. In the case of adaptation to laboratory conditions, half of the changes occurred within intergenic regions, and around 80% were insertions. When the more motile phenotypic variant was evaluated, eight single nucleotide polymorphisms and an 11-bp deletion were found, although none of them was directly related to known motility or chemotaxis genes. Two mutants were constructed to evaluate the 11-bp deletion affecting the alpha subunit of 2-oxoacid:acceptor oxidoreductase (AAV28_RS30705-blr6743). The results showed that this single deletion was not responsible for the enhanced motility phenotype. IMPORTANCE The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoefficiens genomes remain poorly studied. Only a few genome sequences of this important nitrogen-fixing species are available, and there are no genome-wide comparative analyses of related strains. In the present work, we sequenced and compared the genomes of strains derived from a parent strain, B. diazoefficiens USDA 110, that has undergone processes of repeated culture in the laboratory environment, or phenotypic selection toward antibiotic resistance and enhanced motility. Our results represent the first analysis in B. diazoefficiens that provides insights into the specific mutations that are acquired during these processes.


Asunto(s)
Bradyrhizobium/genética , Genoma Bacteriano , Adaptación Biológica , Bradyrhizobium/citología , Bradyrhizobium/fisiología , Genómica , Mutación , Filogenia , Polimorfismo de Nucleótido Simple , Simbiosis
3.
Res Microbiol ; 172(3): 103814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539931

RESUMEN

Bradyrhizobium japonicum E109 is a bacterium widely used for inoculants production in Argentina. It is known for its ability to produce several phytohormones and degrade indole-3-acetic acid (IAA). The genome sequence of B. japonicum E109 was recently analyzed and it showed the presence of genes related to the synthesis of IAA by indole-3-acetonitrile, indole-3-acetamide and tryptamine pathways. Nevertheless, B. japonicum E109 is not able to produce IAA and instead has the ability to degrade this hormone under saprophytic culture conditions. This work aimed to study the molecular and physiological features of IAA degradation and identify the genes responsible of this activity. In B. japonicum E109 we identified two sequences coding for a putative 3-phenylpropionate dioxygenase (subunits α and ß) responsible for the IAA degradation that were homologous to the canonical cluster of iacC and iacD of Pseudomonas putida 1290. These genes form a separate cluster together with three additional genes with unknown functions. The degradation activity was found to be constitutively expressed in B. japonicum E109. As products of IAA degradation, we identified two compounds, 3-indoleacetic acid 2,3-oxide and 2-(2-hydroperoxy-3-hydroxyindolin-3-yl) acetic acid. Our report proposes, for the first time, a model for IAA degradation in Bradyrhizobium.


Asunto(s)
Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Ácidos Indolacéticos/metabolismo , Redes y Vías Metabólicas/genética , Indoles/metabolismo , Triptaminas/metabolismo
4.
J Bacteriol ; 203(7)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468586

RESUMEN

Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, has two independent flagellar systems: a single subpolar flagellum and several lateral flagella. Each flagellum is a very complex organelle composed of 30 to 40 different proteins located inside and outside the cell whereby flagellar gene expression must be tightly controlled. Such control is achieved by a hierarchy of regulators that ensure the timing of synthesis and the allocation of the different flagellar substructures. Previously, we analyzed the gene organization, expression, and function of the lateral flagellar system. Here, we studied the role of the response regulator FlbD and its trans-acting regulator FliX in the regulation of subpolar flagellar genes. We found that the LP-ring, distal rod, and hook of the subpolar flagellum were tightly controlled by FlbD and FliX. Furthermore, we obtained evidence for the existence of cross-regulation between these gene products and the expression of LafR, the master regulator of lateral flagella. In addition, we observed that extracellular polysaccharide production and biofilm formation also responded to these flagellar regulators. In this regard, FlbD might contribute to the switch between the planktonic and sessile states.IMPORTANCE Most environmental bacteria switch between two free-living states: planktonic, in which individual cells swim propelled by flagella, and sessile, in which bacteria form biofilms. Apart from being essential for locomotion, the flagellum has accessory functions during biofilm formation. The synthesis of flagella is a highly regulated process, and coordination with accessory functions requires the interconnection of various regulatory networks. Here, we show the role of class II regulators involved in the synthesis of the B. diazoefficiens subpolar flagellum and their possible participation in cross-regulation with the lateral flagellar system and exopolysaccharide production. These findings highlight the coordination of the synthetic processes of external structures, such as subpolar and lateral flagella, with exopolysaccharides, which are the main component of the biofilm matrix.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos/biosíntesis , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Flagelos/genética , Transactivadores/genética , Transactivadores/metabolismo
5.
J Bacteriol ; 202(5)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31843800

RESUMEN

Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction.IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system's fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Bradyrhizobium/clasificación , Bradyrhizobium/ultraestructura , Flagelos , Regulación Bacteriana de la Expresión Génica , Mutación , Filogenia
6.
Microorganisms ; 7(2)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781830

RESUMEN

Dual flagellar systems have been described in several bacterial genera, but the extent of their prevalence has not been fully explored. Bradyrhizobium diazoefficiens USDA 110T possesses two flagellar systems, the subpolar and the lateral flagella. The lateral flagellum of Bradyrhizobium displays no obvious role, since its performance is explained by cooperation with the subpolar flagellum. In contrast, the lateral flagellum is the only type of flagella present in the related Rhizobiaceae family. In this work, we have analyzed the phylogeny of the Bradyrhizobium genus by means of Genome-to-Genome Blast Distance Phylogeny (GBDP) and Average Nucleotide Identity (ANI) comparisons of 128 genomes and divided it into 13 phylogenomic groups. While all the Bradyrhizobium genomes encode the subpolar flagellum, none of them encodes only the lateral flagellum. The simultaneous presence of both flagella is exclusive of the B. japonicum phylogenomic group. Additionally, 292 Rhizobiales order genomes were analyzed and both flagellar systems are present together in only nine genera. Phylogenetic analysis of 150 representative Rhizobiales genomes revealed an uneven distribution of these flagellar systems. While genomes within and close to the Rhizobiaceae family only possess the lateral flagellum, the subpolar flagellum is exclusive of more early-diverging families, where certain genera also present both flagella.

7.
Res Microbiol ; 169(6): 313-323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29751062

RESUMEN

Bacterial metabolism of phytohormones includes several processes such as biosynthesis, catabolism, conjugation, hydrolysis and homeostatic regulation. However, only biosynthesis and occasionally catabolism are studied in depth in microorganisms. In this work, we evaluated and reconsidered IAA metabolism in Bradyrhizobiumjaponicum E109, one of the most widely used strains for soybean inoculation around the world. The genomic analysis of the strain showed the presence of several genes responsible for IAA biosynthesis, mainly via indole-3-acetonitrile (IAN), indole-3-acetamide (IAM) and tryptamine (TAM) pathways. However; in vitro experiments showed that IAA is not accumulated in the culture medium in significant amounts. On the contrary, a strong degradation activity was observed after exogenous addition of 0.1 mM of IAA, IBA or NAA to the medium. B. japonicum E109 was not able to grow in culture medium containing IAA as a sole carbon source. In YEM medium, the bacteria degraded IAA and hydrolyzed amino acid auxin conjugates with alanine (IAAla), phenylalanine (IAPhe), and leucine (IAPhe), releasing IAA which was quickly degraded. Finally, the presence of exogenous IAA induced physiological changes in the bacteria such as increased biomass and exopolysaccharide production, as well as infection effectiveness and symbiotic behavior in soybean plants.


Asunto(s)
Bradyrhizobium/metabolismo , Glycine max/microbiología , Ácidos Indolacéticos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Semillas/microbiología , Alanina/metabolismo , Bradyrhizobium/genética , Leucina/metabolismo , Fenilalanina/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Simbiosis/fisiología
8.
J Bacteriol ; 199(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28533217

RESUMEN

Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2, whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR (lateral-flagellar regulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbTL , a class III regulator. We observed different requirements for FlbTL in the synthesis of each flagellin subunit. Although the accumulation of lafA1, but not lafA2, transcripts required FlbTL, the production of both flagellin polypeptides required FlbTL Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species.IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens, an N2-fixing symbiont of soybean plants, possesses dual flagellar systems, including the lateral system that contributes to swimming in wet soil and competition for nodulation and is expressed under high energy availability, as well as under requirement for high torque by the flagella. The structural organization and transcriptional regulation of the 41 genes that comprise this secondary flagellar system seem adapted to adjust bacterial energy expenditures for motility to the soil's environmental dynamics.


Asunto(s)
Bradyrhizobium/genética , Flagelos/genética , Flagelina/biosíntesis , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Flagelina/genética , Orden Génico , Genes Bacterianos , Familia de Multigenes , Operón , Glycine max/microbiología , Sitio de Iniciación de la Transcripción
9.
Front Microbiol ; 7: 1608, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790205

RESUMEN

In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like ß sheet structure that specifically recognizes the exopolysaccharide, either as a capsular polysaccharide (CPS) or in its released form [extracellular polysaccharide (EPS)]. In this study, using gain and loss of function approaches combined with phenotypic and microscopic studies we demonstrated that RapA lectins are involved in biofilm matrix development and cellular cohesion. While the absence of any RapA protein increased the compactness of bacterial aggregates, high levels of RapA1 expanded distances between cells and favored the production of a dense matrix network. Whereas endogenous RapA(s) are predominantly located at one bacterial pole, we found that under overproduction conditions, RapA1 surrounded the cell in a way that was reminiscent of the capsule. Accordingly, polysaccharide analyses showed that the RapA lectins promote CPS formation at the expense of lower EPS production. Besides, polysaccharide analysis suggests that RapA modulates the EPS size profile. Collectively, these results show that the interaction of RapA lectins with the polysaccharide is involved in rhizobial biofilm matrix assembly and remodeling.

10.
J Proteomics ; 142: 122-9, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27185551

RESUMEN

UNLABELLED: Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence that displays a high genomic diversity, complicating the study of its pathogenicity, virulence and resistance factors. The interaction of bacterial pathogens with host cells is largely mediated by outer membrane proteins (OMPs). Indeed, several OMPs of Gram-negative bacteria have been recognized as important virulence factors and targets for host immune recognition or to be involved in mechanisms of resistance to antimicrobials. OMPs are also present in outer membrane vesicles (OMVs), which bacteria constitutively secrete to the extracellular milieu and are essential for bacterial survival and pathogenesis. Here, we report the characterization of the OMP and native OMV subproteomes of a clinical isolate (M30) and a collection strain (ATCC13637) of S. maltophilia. We had previously shown that the ATCC13637 strain has an attenuated phenotype in a zebrafish model of infection, as well as a distinct susceptibility profile against a panel of antimicrobials. The protein profiles of the OMP and OMV subproteomes of these two strains and their differences consequently point at pathogenesis, virulence or resistance proteins, such as two variants of the quorum-sensing factor Ax21 that are found to be highly abundant in the OMP fraction and exported to OMVs. BIOLOGICAL SIGNIFICANCE: Stenotrophomonas maltophilia is rapidly climbing positions in the ranking of multidrug-resistant pathogens that are frequently isolated in hospital environments. Being an emerging human pathogen, the knowledge on the factors determining the pathogenicity, virulence and resistance traits of this microorganism is still scarce. Outer membrane proteins (OMPs) and vesicles (OMVs) are key elements for the interaction of Gram-negative bacteria with their environment -including the host-and have fundamental roles in both infection and resistance processes. The present study sets a first basis for a phenotype-dependent characterisation of the OMP subproteome of S. maltophilia and complements very recent work on the OMV subproteome of this species. The variability found among even two strains demonstrates once more that the analysis of genotypically and phenotypically distinct isolates under various conditions will be required before we can draw a significant picture of the OMP and OMV subproteomes of S. maltophilia.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/análisis , Proteómica/métodos , Stenotrophomonas maltophilia/patogenicidad , Factores de Virulencia/análisis , Animales , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Patógeno/inmunología , Humanos , Stenotrophomonas maltophilia/química , Stenotrophomonas maltophilia/aislamiento & purificación , Espectrometría de Masas en Tándem , Pez Cebra
11.
Sci Rep ; 6: 23841, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27053439

RESUMEN

Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.


Asunto(s)
Bradyrhizobium/fisiología , Flagelos/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Quimiotaxis , Regulación Bacteriana de la Expresión Génica , Mutación , Filogenia , Microbiología del Suelo
12.
Microbiol Res ; 182: 80-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26686616

RESUMEN

Adhesion of symbiotic bacteria to host plants is an essential early step of the infection process that leads to the beneficial interaction. In the Bradyrhizobium diazoefficiens-soybean symbiosis few molecular determinants of adhesion are known. Here we identified the tight-adhesion gene products TadGEF in the open-reading frames blr3941-blr3943 of the B. diazoefficiens USDA 110 complete genomic sequence. Predicted structure of TadG indicates a transmembrane domain and two extracytosolic domains, from which the C-terminal has an integrin fold. TadE and TadF are also predicted as bearing transmembrane segments. Mutants in tadG or the small cluster tadGEF were impaired in adhesion to soybean roots, and the root infection was delayed. However, nodule histology was not compromised by the mutations, indicating that these effects were restricted to the earliest contact of the B. diazoefficiens and root surfaces. Knowledge of preinfection determinants is important for development of inoculants that are applied to soybean crops worldwide.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Bradyrhizobium/fisiología , Glycine max/microbiología , Raíces de Plantas/microbiología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bradyrhizobium/química , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
13.
PLoS One ; 8(6): e67207, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840626

RESUMEN

Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Bacterias Gramnegativas/mortalidad , Percepción de Quorum , Stenotrophomonas maltophilia/metabolismo , Pez Cebra/microbiología , Animales , Antibacterianos/farmacología , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Células HeLa , Humanos , Fenotipo , Proteómica , Stenotrophomonas maltophilia/citología , Stenotrophomonas maltophilia/patogenicidad , Stenotrophomonas maltophilia/fisiología , Virulencia
14.
J Bacteriol ; 195(14): 3145-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23667236

RESUMEN

Bradyrhizobium japonicum USDA 110 has five polyhydroxyalkanoate (PHA) synthases (PhaC) annotated in its genome: bll4360 (phaC1), bll6073 (phaC2), blr3732 (phaC3), blr2885 (phaC4), and bll4548 (phaC5). All these proteins possess the catalytic triad and conserved amino acid residues of polyester synthases and are distributed into four different PhaC classes. We obtained mutants in each of these paralogs and analyzed phaC gene expression and PHA production in liquid cultures. Despite the genetic redundancy, only phaC1 and phaC2 were expressed at significant rates, while PHA accumulation in stationary-phase cultures was impaired only in the ΔphaC1 mutant. Meanwhile, the ΔphaC2 mutant produced more PHA than the wild type under this condition, and surprisingly, the phaC3 transcript increased in the ΔphaC2 background. A double mutant, the ΔphaC2 ΔphaC3 mutant, consistently accumulated less PHA than the ΔphaC2 mutant. PHA accumulation in nodule bacteroids followed a pattern similar to that seen in liquid cultures, being prevented in the ΔphaC1 mutant and increased in the ΔphaC2 mutant in relation to the level in the wild type. Therefore, we used these mutants, together with a ΔphaC1 ΔphaC2 double mutant, to study the B. japonicum PHA requirements for survival, competition for nodulation, and plant growth promotion. All mutants, as well as the wild type, survived for 60 days in a carbon-free medium, regardless of their initial PHA contents. When competing for nodulation against the wild type in a 1:1 proportion, the ΔphaC1 and ΔphaC1 ΔphaC2 mutants occupied only 13 to 15% of the nodules, while the ΔphaC2 mutant occupied 81%, suggesting that the PHA polymer is required for successful competitiveness. However, the bacteroid content of PHA did not affect the shoot dry weight accumulation.


Asunto(s)
Aciltransferasas/metabolismo , Bradyrhizobium/enzimología , Bradyrhizobium/metabolismo , Polihidroxialcanoatos/biosíntesis , Aciltransferasas/genética , Bradyrhizobium/genética , Técnicas de Inactivación de Genes , Interacciones Microbianas , Viabilidad Microbiana , Brotes de la Planta/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología
15.
Curr Microbiol ; 65(4): 465-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22782468

RESUMEN

Soybean lectin (SBL) participates in the recognition between Bradyrhizobium japonicum and soybean although its role remains unknown. To search for changes in the proteome in response to SBL, B. japonicum USDA 110 was incubated for 12 h in a C- and N-free medium with or without SBL (10 µg ml(-1)), and the soluble protein profiles were compared. Two polypeptides, S-adenosyl-methionine synthetase (MetK) and the 30S ribosomal protein S1 (RpsA), were found only in the fractions from rhizobia incubated without SBL. Transcript levels of metK and rpsA were not correlated with polypeptide levels, indicating that there was regulation at translation. In support of this proposal, the 5' translation initiation-region of rpsA mRNA contained folding elements as those involved in regulation of its translation in other species. Disappearance of MetK and RpsA from the soluble protein fractions of SBL-treated rhizobia suggests that SBL might have attenuated the nutritional stress response of B. japonicum.


Asunto(s)
Bradyrhizobium/efectos de los fármacos , Bradyrhizobium/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glycine max/química , Lectinas/farmacología , Metionina Adenosiltransferasa/antagonistas & inhibidores , Proteínas Ribosómicas/antagonistas & inhibidores , Carbono/metabolismo , Medios de Cultivo/química , Lectinas/aislamiento & purificación , Nitrógeno/metabolismo , Semillas/química
16.
FEMS Microbiol Lett ; 319(2): 133-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21470300

RESUMEN

Bradyrhizobium japonicum has two types of flagella. One has thin filaments consisting of the 33-kDa flagellins FliCI and FliCII (FliCI-II) and the other has thick filaments consisting of the 65-kDa flagellins FliC1, FliC2, FliC3, and FliC4 (FliC1-4). To investigate the roles of each flagellum in competition for nodulation, we obtained mutants deleted in fliCI-II and/or fliC1-4 in the genomic backgrounds of two derivatives from the reference strain USDA 110: the streptomycin-resistant derivative LP 3004 and its more motile derivative LP 3008. All mutations diminished swimming motility. When each mutant was co-inoculated with the parental strain on soybean plants cultivated in vermiculite either at field capacity or flooded, their competitiveness differed according to the flagellin altered. ΔfliCI-II mutants were more competitive, occupying 64-80% of the nodules, while ΔfliC1-4 mutants occupied 45-49% of the nodules. Occupation by the nonmotile double mutant decreased from 55% to 11% as the water content of the vermiculite increased from 85% to 95% field capacity to flooding. These results indicate that the influence of motility on competitiveness depended on the water status of the rooting substrate.


Asunto(s)
Bradyrhizobium/fisiología , Flagelos/fisiología , Glycine max/microbiología , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Mutación , Nódulos de las Raíces de las Plantas/fisiología , Glycine max/fisiología , Simbiosis
17.
Mol Plant Microbe Interact ; 23(12): 1592-604, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20636103

RESUMEN

Exopolysaccharide (EPS) and lipopolysaccharide (LPS) from Bradyrhizobium japonicum are important for infection and nodulation of soybean (Glycine max), although their roles are not completely understood. To better understand this, we constructed mutants in B. japonicum USDA 110 impaired in galactose or galacturonic acid incorporation into the EPS without affecting the LPS. The derivative LP 3010 had a deletion of lspL-ugdH and produced EPS without galacturonic acid whereas LP 3013, with an insertion in exoB, produced EPS without galactose. In addition, the strain LP 3017, with both mutations, had EPS devoid of both galactosides. The missing galactosides were not replaced by other sugars. The defects in EPS had different consequences. LP 3010 formed biofilms and nodulated but was defective in competitiveness for nodulation; and, inside nodules, the peribacteroid membranes tended to fuse, leading to the merging of symbiosomes. Meanwhile, LP 3013 and LP 3017 were unable to form biofilms and produced empty pseudonodules but exoB suppressor mutants were obtained when LP 3013 plant inoculation was supplemented with wild-type EPS. Similar phenotypes were observed with all these mutants in G. soja. Therefore, the lack of each galactoside in the EPS has a different functional effect on the B. japonicum-soybean symbiosis.


Asunto(s)
Bradyrhizobium/fisiología , Galactosa/química , Galactosa/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Polisacáridos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Bradyrhizobium/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/ultraestructura , Polisacáridos Bacterianos/química , Glycine max/microbiología , Simbiosis
18.
Int J Microbiol ; 2009: 719367, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20016675

RESUMEN

Soybean lectin (SBL) purified from soybean seeds by affinity chromatography strongly bound to Bradyrhizobium japonicum USDA 110 cell surface. This lectin enhanced biofilm formation by B. japonicum in a concentration-dependent manner. Presence of galactose during biofilm formation had different effects in the presence or absence of SBL. Biofilms were completely inhibited in the presence of both SBL and galactose, while in the absence of SBL, galactose was less inhibitory. SBL was very stable, since its agglutinating activity of B. japonicum cells as well as of human group A+ erythrocytes was resistant to preincubation for one week at 60 degrees C. Hence, we propose that plant remnants might constitute a source of this lectin, which might remain active in soil and thus favor B. japonicum biofilm formation in the interval between soybean crop seasons.

19.
FEMS Microbiol Ecol ; 65(2): 279-88, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18393991

RESUMEN

The effect of the rhizobium adhesion protein RapA1 on Rhizobium leguminosarum bv. trifolii adsorption to Trifolium pratense (red clover) roots was investigated. We altered RapA1 production by cloning its encoding gene under the plac promoter into the stable vector pHC60. After introducing this plasmid in R. leguminosarum bv. trifolii, three to four times more RapA1 was produced, and two to five times higher adsorption to red clover roots was obtained, as compared with results for the empty vector. Enhanced adsorption was also observed on soybean and alfalfa roots, not related to R. leguminosarum cross inoculation groups. Although the presence of 1 mM Ca2+ during rhizobial growth enhanced adsorption, it was unrelated to RapA1 level. Similar effects were obtained when the same plasmid was introduced in Rhizobium etli for its adsorption to bean roots. Although root colonization by the RapA1-overproducing strain was also higher, nodulation was not enhanced. In addition, in vitro biofilm formation was similar to the wild-type both on polar and on hydrophobic surfaces. These results suggest that RapA1 receptors are present in root but not on inert surfaces, and that the function of this protein is related to rhizosphere colonization.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Raíces de Plantas/microbiología , Trifolium/microbiología , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Fabaceae/clasificación , Fabaceae/microbiología , Fijación del Nitrógeno/fisiología , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/fisiología
20.
FEMS Microbiol Lett ; 282(1): 115-23, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18336548

RESUMEN

A Bradyrhizobium japonicum USDA 110-derived strain able to produce wider halos in soft-agar medium than its parental strain was obtained by recurrent selection. It was more chemotactic than the wild type towards mannitol and three amino acids. When cultured in minimal medium with mannitol as a single carbon-source, it had one thick subpolar flagellum as the wild type, plus several other flagella that were thinner and sinusoidal. Root adsorption and infectivity in liquid media were 50-100% higher for the selected strain, but root colonization in water-unsaturated vermiculite was similar to the wild type. A field experiment was then carried out in a soil with a naturalized population of 1.8 x 10(5) soybean-nodulating rhizobia g of soil(-1). Bradyrhizobium japonicum strains were inoculated either on the soybean seeds or in the sowing furrows. Nodule occupation was doubled when the strains were inoculated in the sowing furrows with respect to seed inoculation (significant with P<0.05). On comparing strains, nodule occupation with seed inoculation was 6% or 10% for the wild type or selected strains, respectively, without a statistically significant difference, while when inoculated in the sowing furrows, nodule occupation increased to 12% and 22%, respectively (differences significant with P<0.05).


Asunto(s)
Bradyrhizobium/genética , Bradyrhizobium/fisiología , Glycine max/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Bacterianas/análisis , Bradyrhizobium/citología , Quimiotaxis , Flagelina/análisis , Nódulos de las Raíces de las Plantas/fisiología , Glycine max/fisiología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...