Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 879: 163041, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965738

RESUMEN

Pesticides from urban and agricultural runoff have been detected at concentrations above current water quality guidelines in the Great Barrier Reef (GBR) marine environment. We quantify the load of the pesticide diuron entering GBR waters using the GBR-Dynamic SedNet catchment model. After comparison of simulated distributions with observations at 11 monitoring sites we determined a half-life of diuron in GBR marine waters of 40 days. We followed diuron dispersal in the GBR (2016-2018) using the 1 km resolution eReefs marine model. The highest diuron concentrations in GBR waters occurred in the Mackay-Whitsunday region with a spike in January and March 2017, associated with 126 and 118 kg d-1 diuron loads from Plane Creek and the O'Connell River respectively. We quantify areas of GBR waters exposed to potentially ecotoxic concentrations of diuron. Between 2016 and 2018, 400 km2 and 1400 km2 of the GBR were exposed to concentrations exceeding ecosystem threshold values of 0.43 and 0.075 µg L-1 respectively. Using observed mapped coral and seagrass habitat, 175 km2 of seagrass beds and 50 km2 of coral habitats had peak diuron concentrations above 0.075 µg L-1 during this period. While the highest concentrations are localised to river plumes and inshore environments, non-zero diuron concentrations extend along the Queensland coast. These simulations provide new knowledge for the understanding of pesticide dispersal and management-use in GBR catchments and the design of in-water monitoring systems.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Ecosistema , Arrecifes de Coral , Diurona , Contaminantes Químicos del Agua/análisis
2.
PLoS One ; 18(1): e0279699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662876

RESUMEN

Macroalgae are an important component of coral reef ecosystems. We identified spatial patterns, environmental drivers and long-term trends of total cover of upright fleshy and calcareous coral reef inhabiting macroalgae in the Great Barrier Reef. The spatial study comprised of one-off surveys of 1257 sites (latitude 11-24°S, coastal to offshore, 0-18 m depth), while the temporal trends analysis was based on 26 years of long-term monitoring data from 93 reefs. Environmental predictors were obtained from in situ data and from the coupled hydrodynamic-biochemical model eReefs. Macroalgae dominated the benthos (≥50% cover) on at least one site of 40.4% of surveyed inshore reefs. Spatially, macroalgal cover increased steeply towards the coast, with latitude away from the equator, and towards shallow (≤3 m) depth. Environmental conditions associated with macroalgal dominance were: high tidal range, wave exposure and irradiance, and low aragonite saturation state, Secchi depth, total alkalinity and temperature. Evidence of space competition between macroalgal cover and hard coral cover was restricted to shallow inshore sites. Temporally, macroalgal cover on inshore and mid-shelf reefs showed some fluctuations, but unlike hard corals they showed no systematic trends. Our extensive empirical data may serve to parameterize ecosystem models, and to refine reef condition indices based on macroalgal data for Pacific coral reefs.


Asunto(s)
Antozoos , Algas Marinas , Animales , Arrecifes de Coral , Ecosistema , Temperatura
3.
Mar Pollut Bull ; 168: 112409, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33957497

RESUMEN

Recently, corals on the Great Barrier (GBR) have suffered mass bleaching. The link between ocean warming and coral bleaching is understood to be due to temperature-dependence of complex physiological processes in the coral host and algal symbiont. Here we use a coupled catchment-hydrodynamic-biogeochemical model, with detailed zooxanthellae photophysiology including photoadaptation, photoacclimation and reactive oxygen build-up, to investigate whether natural and anthropogenic catchment loads impact on coral bleaching on the GBR. For the wet season of 2017, simulations show the cross-shelf water quality gradient, driven by both natural and anthropogenic loads, generated a contrasting zooxanthellae physiological state on inshore versus mid-shelf reefs. The relatively small catchment flows and loads delivered during 2017, however, generated small river plumes with limited impact on water quality. Simulations show the removal of the anthropogenic fraction of the catchment loads delivered in 2017 would have had a negligible impact on bleaching rates.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Nutrientes , Estrés Oxidativo , Calidad del Agua
4.
Mar Pollut Bull ; 167: 112297, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33901977

RESUMEN

Water quality of the Great Barrier Reef (GBR) is determined by a range of natural and anthropogenic drivers that are resolved in the eReefs coupled hydrodynamic - biogeochemical marine model forced by a process-based catchment model, GBR Dynamic SedNet. Model simulations presented here quantify the impact of anthropogenic catchment loads of sediments and nutrients on a range of marine water quality variables. Simulations of 2011-2018 show that reduction of anthropogenic catchment loads results in improved water quality, especially within river plumes. Within the 16 resolved river plumes, anthropogenic loads increased chlorophyll concentration by 0.10 (0.02-0.25) mg Chl m-3. Reductions of anthropogenic loads following proposed Reef 2050 Water Quality Improvement Plan targets reduced chlorophyll concentration in the plumes by 0.04 (0.01-0.10) mg Chl m-3. Our simulations demonstrate the impact of anthropogenic loads on GBR water quality and quantify the benefits of improved catchment management.


Asunto(s)
Ríos , Calidad del Agua , Arrecifes de Coral , Monitoreo del Ambiente , Sedimentos Geológicos , Nutrientes
5.
PLoS One ; 15(10): e0239978, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33079939

RESUMEN

Coral bleaching driven by ocean warming is one of the most visible ecological impacts of climate change and perhaps the greatest threat to the persistence of reefs in the coming decades. In the absence of returning atmospheric greenhouse gas concentrations to those compatible with ocean temperatures below the mass coral bleaching temperature thresholds, the most straightforward means to reduce thermal-stress induced bleaching is to cool water at the seabed. The feasibility of reducing the seabed temperature through cool-water injections is considered first by analysing the feasibility of doing so on 19 reefs with differing physical environments using a simple residence time metric in 200 m resolution hydrodynamic model configurations. We then concentrate on the reefs around Lizard Island, the most promising candidate of the 19 locations, and develop a 40 m hydrodynamic model to investigate the effect of the injection of cool water at differing volumetric rates. Injecting 27°C seawater at a rate of 5 m3 s-1 at 4 sites in early 2017 cooled 97 ha of the reef by 0.15°C or more. The power required to pump 5 m3 s-1 through a set of pipes over a distance of 3 km from a nearby channel is ∼466 kW. This power applied at 4 sites for 3 months achieves a 2 Degree Heating Weeks (DHWs) reduction on 97 ha of reef. A more precise energy costing will require further expert engineering design of the pumping equipment and energy sources. Even for the most physically favourable reefs, cool-water transported through pipes and injected at a reef site is energy expensive and cannot be scaled up to any meaningful fraction of the 3,100 reefs of the GBR. Should priority be given to reducing thermal stress on one or a few high value reefs, this paper provides a framework to identify the most promising sites.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Estrés Fisiológico , Animales , Frío , Ecosistema , Hidrodinámica , Agua de Mar/química
6.
Glob Chang Biol ; 26(4): 2149-2160, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32048410

RESUMEN

Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present-day ecosystems is limited. Here we use data from three independent large-scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar ) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1-fold) and coral juvenile densities (1.3-fold), while non-calcifying macroalgae greatly increase (up to 3.2-fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5-3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.

7.
J Environ Manage ; 182: 641-650, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27564868

RESUMEN

Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Ecosistema , Animales , Australia , Análisis Costo-Beneficio , Explotaciones Pesqueras , Peces , Concentración de Iones de Hidrógeno , Biología Marina , Océanos y Mares
8.
Nat Commun ; 7: 10732, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26907171

RESUMEN

The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.


Asunto(s)
Antozoos/metabolismo , Carbonato de Calcio/metabolismo , Arrecifes de Coral , Agua de Mar/química , Animales , Hidrodinámica , Concentración de Iones de Hidrógeno , Modelos Biológicos , Modelos Químicos , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...