Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38540004

RESUMEN

Photobiomodulation (PBM) is a newly adopted consensus term to replace the therapeutic application of low-level laser therapy. It has been suggested that PMB influences the microbiome which, in turn, has increasingly been shown to be linked with health and disease. Even though the use of PBM has also grown dramatically in veterinary medicine, there is still a lack of evidence supporting its effect in vivo. Our objective was to investigate the impact of a dual-wavelength near-infrared laser source (Multiwavelength Locked Laser System, MLS®) on the skin microbiome in atopic dogs. Twenty adult-client-owned atopic dogs were enrolled in the study. The dogs were treated with MLS® laser therapy on one half of the abdominal region, whereas the contralateral side was left untreated and served as a control. Skin microbiome samples were collected before and after MLS® treatments, and then subjected to NGS-based ITS and 16S rRNA analysis. The results showed that while microbiome composition and diversity were not significantly affected, PBM could play a role in modulating the abundance of specific bacterial species, in particular Staphylococcus, that represent a major skin pathogenic strain. To the best of the authors' knowledge, this is the first study to investigate the potential impact of MLS® laser therapy on the skin microbiome in atopic dogs.

2.
Stem Cell Res Ther ; 15(1): 20, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233961

RESUMEN

BACKGROUND: The glomerulus is a highly complex system, composed of different interdependent cell types that are subjected to various mechanical stimuli. These stimuli regulate multiple cellular functions, and changes in these functions may contribute to tissue damage and disease progression. To date, our understanding of the mechanobiology of glomerular cells is limited, with most research focused on the adaptive response of podocytes. However, it is crucial to recognize the interdependence between podocytes and parietal epithelial cells, in particular with the progenitor subset, as it plays a critical role in various manifestations of glomerular diseases. This highlights the necessity to implement the analysis of the effects of mechanical stress on renal progenitor cells. METHODS: Microgravity, modeled by Rotary Cell Culture System, has been employed as a system to investigate how renal progenitor cells respond to alterations in the mechanical cues within their microenvironment. Changes in cell phenotype, cytoskeleton organization, cell proliferation, cell adhesion and cell capacity for differentiation into podocytes were analyzed. RESULTS: In modeled microgravity conditions, renal progenitor cells showed altered cytoskeleton and focal adhesion organization associated with a reduction in cell proliferation, cell adhesion and spreading capacity. Moreover, mechanical forces appeared to be essential for renal progenitor differentiation into podocytes. Indeed, when renal progenitors were exposed to a differentiative agent in modeled microgravity conditions, it impaired the acquisition of a complex podocyte-like F-actin cytoskeleton and the expression of specific podocyte markers, such as nephrin and nestin. Importantly, the stabilization of the cytoskeleton with a calcineurin inhibitor, cyclosporine A, rescued the differentiation of renal progenitor cells into podocytes in modeled microgravity conditions. CONCLUSIONS: Alterations in the organization of the renal progenitor cytoskeleton due to unloading conditions negatively affect the regenerative capacity of these cells. These findings strengthen the concept that changes in mechanical cues can initiate a pathophysiological process in the glomerulus, not only altering podocyte actin cytoskeleton, but also extending the detrimental effect to the renal progenitor population. This underscores the significance of the cytoskeleton as a druggable target for kidney diseases.


Asunto(s)
Enfermedades Renales , Podocitos , Ingravidez , Humanos , Citoesqueleto/metabolismo , Riñón , Enfermedades Renales/metabolismo , Células Madre/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430601

RESUMEN

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Piel/metabolismo , Suturas , Queratinocitos/fisiología , Procedimientos Neuroquirúrgicos
5.
Front Bioeng Biotechnol ; 10: 958381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267456

RESUMEN

Wound healing (WH) and the role fibroblasts play in the process, as well as healing impairment and fibroblast dysfunction, have been thoroughly reviewed by other authors. We treat these topics briefly, with the only aim of contextualizing the true focus of this review, namely, the microgravity-induced changes in fibroblast functions involved in WH. Microgravity is a condition typical of spaceflight. Studying its possible effects on fibroblasts and WH is useful not only for the safety of astronauts who will face future interplanetary space missions, but also to help improve the management of WH impairment on Earth. The interesting similarity between microgravity-induced alterations of fibroblast behavior and fibroblast dysfunction in WH impairment on Earth is highlighted. The possibility of using microgravity-exposed fibroblasts and WH in space as models of healing impairment on Earth is suggested. The gaps in knowledge on fibroblast functions in WH are analyzed. The contribution that studies on fibroblast behavior in weightlessness can make to fill these gaps and, consequently, improve therapeutic strategies is considered.

6.
Front Bioeng Biotechnol ; 10: 873384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573226

RESUMEN

Wound healing is slowed in Space. Microgravity and possible physical factors associated with Space affect alterations in fibroblast, matrix formation, dysregulation in apoptosis and inflammation. The microbial populations settled on skin, space modules, in space suits, are also playing a pivotal role, as wound healing is also affected by the microbial community. We propose a perspective that includes four domines for the application of human skin microbiota for wound healing in Space: The natural antimicrobial properties of the skin microbiota, the crosstalk of the skin microbiota with the immune system during wound healing, the contribution of the microbiota in precision medicine, and the role of gut-skin and gut-brain axes. A stronger understanding of the connections and metabolic network among bacteria, fungi, the host's immune system and the host metabolism will support the basis for a better wound healing in Space.

7.
Br J Pharmacol ; 179(11): 2538-2557, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35170019

RESUMEN

As human spaceflight progresses with extended mission durations, the demand for effective and safe drugs will necessarily increase. To date, the accepted medications used during missions (for space motion sickness, sleep disturbances, allergies, pain, and sinus congestion) are administered under the assumption that they act as safely and efficaciously as on Earth. However, physiological changes have been documented in human subjects in spaceflight involving fluid shifts, muscle and bone loss, immune system dysregulation, and adjustments in the gastrointestinal tract and metabolism. These alterations may change the pharmacokinetics (PK) and pharmacodynamics of commonly used medications. Frustratingly, the information gained from bed rest studies and from in-flight observations is incomplete and also demonstrates a high variability in drug PK. Therefore, the objectives of this review are to report (i) the impact of the space environmental stressors on human physiology in relation to PK; (ii) the state-of-the-art on experimental data in space and/or in ground-based models; (iii) the validation of ground-based models for PK studies; and (iv) the identification of research gaps.


Asunto(s)
Vuelo Espacial , Ingravidez , Adaptación Fisiológica , Reposo en Cama , Humanos
8.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163344

RESUMEN

The complexity of microglia phenotypes and their related functions compels the continuous study of microglia in diseases animal models. We demonstrated that oxygen-glucose deprivation (OGD) induced rapid, time- and space-dependent phenotypic microglia modifications in CA1 stratum pyramidalis (SP) and stratum radiatum (SR) of rat organotypic hippocampal slices as well as the degeneration of pyramidal neurons, especially in the outer layer of SP. Twenty-four h following OGD, many rod microglia formed trains of elongated cells spanning from the SR throughout the CA1, reaching the SP outer layer where they acquired a round-shaped amoeboid phagocytic head and phagocytosed most of the pyknotic, damaged neurons. NIR-laser treatment, known to preserve neuronal viability after OGD, prevented rod microglia formation. In CA3 SP, pyramidal neurons were less damaged, no rod microglia were found. Thirty-six h after OGD, neuronal damage was more pronounced in SP outer and inner layers of CA1, rod microglia cells were no longer detectable, and most microglia were amoeboid/phagocytic. Damaged neurons, more numerous 36 h after OGD, were phagocytosed by amoeboid microglia in both inner and outer layers of CA1. In response to OGD, microglia can acquire different morphofunctional phenotypes which depend on the time after the insult and on the subregion where microglia are located.


Asunto(s)
Hipocampo , Microglía , Animales , Glucosa , Hipoxia , Isquemia , Oxígeno , Fenotipo , Ratas
9.
Front Bioeng Biotechnol ; 9: 739747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966726

RESUMEN

The aim of personalized medicine is to detach from a "one-size fits all approach" and improve patient health by individualization to achieve the best outcomes in disease prevention, diagnosis and treatment. Technological advances in sequencing, improved knowledge of omics, integration with bioinformatics and new in vitro testing formats, have enabled personalized medicine to become a reality. Individual variation in response to environmental factors can affect susceptibility to disease and response to treatments. Space travel exposes humans to environmental stressors that lead to physiological adaptations, from altered cell behavior to abnormal tissue responses, including immune system impairment. In the context of human space flight research, human health studies have shown a significant inter-individual variability in response to space analogue conditions. A substantial degree of variability has been noticed in response to medications (from both an efficacy and toxicity perspective) as well as in susceptibility to damage from radiation exposure and in physiological changes such as loss of bone mineral density and muscle mass in response to deconditioning. At present, personalized medicine for astronauts is limited. With the advent of longer duration missions beyond low Earth orbit, it is imperative that space agencies adopt a personalized strategy for each astronaut, starting from pre-emptive personalized pre-clinical approaches through to individualized countermeasures to minimize harmful physiological changes and find targeted treatment for disease. Advances in space medicine can also be translated to terrestrial applications, and vice versa. This review places the astronaut at the center of personalized medicine, will appraise existing evidence and future preclinical tools as well as clinical, ethical and legal considerations for future space travel.

10.
NPJ Microgravity ; 7(1): 56, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934056

RESUMEN

The target of human flight in space has changed from permanence on the International Space Station to missions beyond low earth orbit and the Lunar Gateway for deep space exploration and Missions to Mars. Several conditions affecting space missions had to be considered: for example the effect of weightlessness and radiations on the human body, behavioral health decrements or communication latency, and consumable resupply. Telemedicine and telerobotic applications, robot-assisted surgery with some hints on experimental surgical procedures carried out in previous missions, had to be considered as well. The need for greater crew autonomy in health issues is related to the increasing severity of medical and surgical interventions that could occur in these missions, and the presence of a highly trained surgeon on board would be recommended. A surgical robot could be a valuable aid but only inasfar as it is provided with multiple functions, including the capability to perform certain procedures autonomously. Space missions in deep space or on other planets present new challenges for crew health. Providing a multi-function surgical robot is the new frontier. Research in this field shall be paving the way for the development of new structured plans for human health in space, as well as providing new suggestions for clinical applications on Earth.

11.
Cell Mol Life Sci ; 78(23): 7795-7812, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714361

RESUMEN

Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.


Asunto(s)
Apoptosis , Daño del ADN , Regulación de la Expresión Génica , Epitelio Pigmentado de la Retina/efectos de los fármacos , Vuelo Espacial/métodos , Ubiquinona/análogos & derivados , Ingravidez , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Ubiquinona/farmacología
12.
Mol Neurobiol ; 58(10): 5383-5395, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34319540

RESUMEN

Brain photobiomodulation (PBM) is an innovative treatment for a variety of neurological conditions, including cerebral ischemia. However, the capability of PBM for ischemic stroke needs to be further explored and its mechanisms of action remain currently unclear. The aim of the present research was to identify a treatment protocol capable of inducing neuroprotection and to investigate the molecular mechanisms activated by a dual-wavelength near infrared (NIR) laser source in an organotypic hippocampal slice model of hypoxia/ischemia. Hippocampal slices were exposed to oxygen and glucose deprivation (OGD) for 30 min followed by NIR laser light (fluence 3.71, 7.42, or 14.84 J/cm2; wavelengths 808 nm and 905 nm) delivered immediately or 30 min or 60 min after OGD, in order to establish a therapeutic window. Neuronal injury was assessed by propidium iodide fluorescence 24 h later. Our results show that NIR laser irradiation attenuates OGD neurotoxicity once applied immediately or 30 min after OGD. Western blot analysis of proteins involved in neuroinflammation (iNOS, COX-2, NFkB subunit p65, and Bcl-2) and in glutamatergic-mediated synaptic activity (vGluT1, EAAT2, GluN1, and PSD95) showed that the protein modifications induced by OGD were reverted by NIR laser application. Moreover, CA1 confocal microscopy revealed that the profound morphological changes induced by OGD were reverted by NIR laser radiation. In conclusion, NIR laser radiation attenuates OGD neurotoxicity in organotypic hippocampal slices through attenuation of inflammatory mechanisms. These findings shed light on molecular definition of NIR neuroprotective mechanisms, thus underlining the potential benefit of this technique for the treatment of cerebral ischemia.


Asunto(s)
Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/terapia , Terapia por Láser/métodos , Terapia por Luz de Baja Intensidad/métodos , Neuroprotección/fisiología , Animales , Femenino , Hipocampo/patología , Hipoxia-Isquemia Encefálica/patología , Masculino , Microscopía Fluorescente/métodos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
13.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925533

RESUMEN

Microgravity-induced bone loss is currently a significant and unresolved health risk for space travelers, as it raises the likelihood for irreversible changes that weaken skeletal integrity and the incremental onset of fracture injuries and renal stone formation. Another issue related to bone tissue homeostasis in microgravity is its capacity to regenerate following fractures due to weakening of the tissue and accidental events during the accomplishment of particularly dangerous tasks. Today, several pharmacological and non-pharmacological countermeasures to this problem have been proposed, including physical exercise, diet supplements and administration of antiresorptive or anabolic drugs. However, each class of pharmacological agents presents several limitations as their prolonged and repeated employment is not exempt from the onset of serious side effects, which limit their use within a well-defined range of time. In this review, we will focus on the various countermeasures currently in place or proposed to address bone loss in conditions of microgravity, analyzing in detail the advantages and disadvantages of each option from a pharmacological point of view. Finally, we take stock of the situation in the currently available literature concerning bone loss and fracture healing processes. We try to understand which are the critical points and challenges that need to be addressed to reach innovative and targeted therapies to be used both in space missions and on Earth.


Asunto(s)
Huesos/metabolismo , Ingravidez/efectos adversos , Enfermedades Óseas Metabólicas/metabolismo , Calcio , Ejercicio Físico/fisiología , Humanos , Vuelo Espacial
14.
Biomedicines ; 9(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809724

RESUMEN

The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe. To study the cellular and molecular events associated with the anti-inflammatory activity of PBMT by a dual-wavelength NIR laser source, human dermal fibroblasts were exposed to a mix of inflammatory cytokines (IL-1ß and TNF-α) followed by laser treatment once a day for three days. Inducible inflammatory key enzymatic pathways, as iNOS and COX-2/mPGES-1/PGE2, were upregulated by the cytokine mix while PBMT reverted their levels and activities. The same behavior was observed with the proangiogenic factor vascular endothelial growth factor (VEGF), involved in neovascularization of granulation tissue. From a molecular point of view, PBMT retained NF-kB cytoplasmatic localization. According to a change in cell morphology, differences in expression and distribution of fundamental cytoskeletal proteins were observed following treatments. Tubulin, F-actin, and α-SMA changed their organization upon cytokine stimulation, while PBMT reestablished the basal localization. Cytoskeletal rearrangements occurring after inflammatory stimuli were correlated with reorganization of membrane α5ß1 and fibronectin network as well as with their upregulation, while PBMT induced significant downregulation. Similar changes were observed for collagen I and the gelatinolytic enzyme MMP-1. In conclusion, the present study demonstrates that the proposed NIR laser therapy is effective in controlling fibroblast activation induced by IL-1ß and TNF-α, likely responsible for a deleterious effect of persistent inflammation.

15.
J Inflamm Res ; 14: 965-979, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776469

RESUMEN

PURPOSE: Evidence-based and effective treatments for COVID-19 are limited, and a new wave of infections and deaths calls for novel, easily implemented treatment strategies. Photobiomodulation therapy (PBMT) is a well-known adjunctive treatment for pain management, wound healing, lymphedema, and cellulitis. PBMT uses light to start a cascade of photochemical reactions that lead to local and systemic anti-inflammatory effects at multiple levels and that stimulate healing. Numerous empirical studies of PBMT for patients with pulmonary disease such as pneumonia, COPD and asthma suggest that PBMT is a safe and effective adjunctive treatment. Recent systematic reviews suggest that PBMT may be applied to target lung tissue in COVID-19 patients. In this preliminary study, we evaluated the effect of adjunctive PBMT on COVID-19 pneumonia and patient clinical status. PATIENTS AND METHODS: We present a small-scale clinical trial with 10 patients randomized to standard medical care or standard medical care plus adjunctive PBMT. The PBMT group received four daily sessions of near-infrared light treatment targeting the lung tissue via a Multiwave Locked System (MLS) laser. Patient outcomes were measured via blood work, chest x-rays, pulse oximetry and validated scoring tools for pneumonia. RESULTS: PBMT patients showed improvement on pulmonary indices such as SMART-COP, BCRSS, RALE, and CAP (Community-Acquired Pneumonia questionnaire). PBMT-treated patients showed rapid recovery, did not require ICU admission or mechanical ventilation, and reported no long-term sequelae at 5 months after treatment. In the control group, 60% of patients were admitted to the ICU for mechanical ventilation. The control group had an overall mortality of 40%. At a 5-month follow-up, 40% of the control group experienced long-term sequelae. CONCLUSION: PBMT is a safe and effective potential treatment for COVID-19 pneumonia and improves clinical status in COVID-19 pneumonia.

16.
Am J Case Rep ; 21: e926779, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32865522

RESUMEN

BACKGROUND Coronavirus disease 2019 (COVID-19) is associated with lung inflammation and cytokine storm. Photobiomodulation therapy (PBMT) is a safe, non-invasive therapy with significant anti-inflammatory effects. Adjunct PBMT has been employed in treating patients with lung conditions. Human studies and experimental models of respiratory disease suggest PBMT reduces inflammation and promotes lung healing. This is the first time supportive PBMT was used in a severe case of COVID-19 pneumonia. CASE REPORT A 57-year-old African American man with severe COVID-19 received 4 once-daily PBMT sessions by a laser scanner with pulsed 808 nm and super-pulsed 905 nm modes for 28 min. The patient was evaluated before and after treatment via radiological assessment of lung edema (RALE) by CXR, pulmonary severity indices, blood tests, oxygen requirements, and patient questionnaires. Oxygen saturation (SpO2) increased from 93-94% to 97-100%, while the oxygen requirement decreased from 2-4 L/min to 1 L/min. The RALE score improved from 8 to 5. The Pneumonia Severity Index improved from Class V (142) to Class II (67). Additional pulmonary indices (Brescia-COVID and SMART-COP) both decreased from 4 to 0. CRP normalized from 15.1 to 1.23. The patient reported substantial improvement in the Community-Acquired Pneumonia assessment tool. CONCLUSIONS This report has presented supportive PBMT in a patient with severe COVID-19 pneumonia. Respiratory indices, radiological findings, oxygen requirements, and patient outcomes improved over several days and without need for a ventilator. Future controlled clinical trials are required to evaluate the effects of PBMT on clinical outcomes in patients with COVID-19 pneumonia.


Asunto(s)
Betacoronavirus , Negro o Afroamericano , Infecciones por Coronavirus/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Neumonía Viral/radioterapia , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/etnología , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/etnología , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Estados Unidos/epidemiología
17.
FASEB J ; 34(8): 11143-11167, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32627872

RESUMEN

Exercise modulates metabolism and the gut microbiome. Brief exposure to low mT-range pulsing electromagnetic fields (PEMFs) was previously shown to accentuate in vitro myogenesis and mitochondriogenesis by activating a calcium-mitochondrial axis upstream of PGC-1α transcriptional upregulation, recapitulating a genetic response implicated in exercise-induced metabolic adaptations. We compared the effects of analogous PEMF exposure (1.5 mT, 10 min/week), with and without exercise, on systemic metabolism and gut microbiome in four groups of mice: (a) no intervention; (b) PEMF treatment; (c) exercise; (d) exercise and PEMF treatment. The combination of PEMFs and exercise for 6 weeks enhanced running performance and upregulated muscular and adipose Pgc-1α transcript levels, whereas exercise alone was incapable of elevating Pgc-1α levels. The gut microbiome Firmicutes/Bacteroidetes ratio decreased with exercise and PEMF exposure, alone or in combination, which has been associated in published studies with an increase in lean body mass. After 2 months, brief PEMF treatment alone increased Pgc-1α and mitohormetic gene expression and after >4 months PEMF treatment alone enhanced oxidative muscle expression, fatty acid oxidation, and reduced insulin levels. Hence, short-term PEMF treatment was sufficient to instigate PGC-1α-associated transcriptional cascades governing systemic mitohormetic adaptations, whereas longer-term PEMF treatment was capable of inducing related metabolic adaptations independently of exercise.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Adaptación Fisiológica/fisiología , Animales , Bacteroidetes/crecimiento & desarrollo , Composición Corporal/fisiología , Ácidos Grasos/metabolismo , Femenino , Firmicutes/crecimiento & desarrollo , Estudios de Seguimiento , Expresión Génica/fisiología , Insulina/metabolismo , Campos Magnéticos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Transcripción Genética/fisiología , Activación Transcripcional/fisiología
18.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936443

RESUMEN

Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.


Asunto(s)
Modelos Biológicos , Plasma Rico en Plaquetas/metabolismo , Ingravidez , Cicatrización de Heridas , Animales , Recuento de Células , Movimiento Celular/genética , Colágeno/metabolismo , Elasticidad , Regulación de la Expresión Génica , Sanguijuelas/fisiología , Ratones , Células 3T3 NIH , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Sci Rep ; 9(1): 9297, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243320

RESUMEN

Neuropathic pain is characterized by an uncertain etiology and by a poor response to common therapies. The ineffectiveness and the frequent side effects of the drugs used to counteract neuropathic pain call for the discovery of new therapeutic strategies. Laser therapy proved to be effective for reducing pain sensitivity thus improving the quality of life. However, its application parameters and efficacy in chronic pain must be further analyzed. We investigated the pain relieving and protective effect of Photobiomodulation Therapy in a rat model of compressive mononeuropathy induced by Chronic Constriction Injury of the sciatic nerve (CCI). Laser (MLS-MiS) applications started 7 days after surgery and were performed ten times over a three week period showing a reduction in mechanical hypersensitivity and spontaneous pain that started from the first laser treatment until the end of the experiment. The ex vivo analysis highlighted the protective role of laser through the myelin sheath recovery in the sciatic nerve, inhibition of iNOS expression and enhancement of EAAT-2 levels in the spinal cord. In conclusion, this study supports laser treatment as a future therapeutic strategy in patients suffering from neuropathic pain induced by trauma.


Asunto(s)
Rayos Láser , Terapia por Luz de Baja Intensidad/métodos , Vaina de Mielina/efectos de la radiación , Neuralgia/radioterapia , Animales , Conducta Animal , Transportador 2 de Aminoácidos Excitadores/metabolismo , Hiperalgesia/complicaciones , Inflamación , Masculino , Proteína Básica de Mielina/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Umbral del Dolor , Presión , Calidad de Vida , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Médula Espinal/efectos de la radiación
20.
Plant Physiol Biochem ; 139: 389-394, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30959447

RESUMEN

This work inserts in the research field regarding the effects of altered gravity conditions on biological plant processes. Pinus pinea seeds germination was studied in simulated microgravity (2x10-3g) and hypergravity (20g) conditions. The effects of simulated gravity were evaluated monitoring the levels of the key enzymes, involved in the main metabolic pathway during germination process of lipid-rich seeds (oilseeds): isocitrate lyase and malate synthase for glyoxylate cycle, 3-hydroxyacyl-CoA dehydrogenase for beta-oxidation, isocitrate dehydrogenase for Krebs cycle, pyruvate kinase for glycolysis and glucose 6 phosphate dehydrogenase for pentose phosphate shunt. The simulated micro and hypergravity conditions were obtained by a Random Position Machine and a Hyperfuge, respectively. Results show that the levels of some tested enzymes, at different lag times of the germination process, have the same trend of controls (g = 1), but with significant differences from quantitative point of view. They are higher in microgravity conditions and lower in hypergravity ones, suggesting that, from a biochemical point of view, the germination process results accelerated in microgravity conditions and delayed in hypergravity ones. These biochemical results show a good correlation with morphological ones, obtained with the measurement of the length of the seeds sprouting radicle. These results give promising indications regarding the possibility to grow plant with lipid-rich seeds in spatial environment, to obtain food sources for astronauts during long term space missions and to reconstitute new atmosphere.


Asunto(s)
Glioxilatos/metabolismo , Pinus/metabolismo , Semillas/metabolismo , Germinación/fisiología , Ingravidez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...