Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 754: 142344, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254885

RESUMEN

There is a worldwide growing use of chemicals by our developed, industrialized, and technological society. More than 100,000 chemical substances are thus commonly used both by industry and households. Depending on the amount produced, physical-chemical properties, and mode of use, many of them may reach the environment and, notably, the aquatic receiving systems. This may result in undesirable and harmful side-effects on both the human and the ecosystem's health. Mediterranean rivers are largely different from Northern and Central European rivers in terms of hydrological regime, climate conditions (e.g. air temperature, solar irradiation, precipitation), and socio-economics (e.g. land use, tourism, crop types, etc.), with all these factors leading to differences in the relative importance of the environmental stressors, in the classes and levels of the pollutants found and their environmental fate. Furthermore, water scarcity might be critical in affecting water pollution because of the lowered dilution capacity of chemicals. This work provides raw chemical data from different families of microcontaminants identified in three selected Mediterranean rivers (the Sava, Evrotas, and Adige) collected during two sampling campaigns conducted in 2014 and 2015 in three different matrices, namely, water, sediments, and biota (fish). More than 200 organic micropollutants were analyzed, including relevant groups like pharmaceuticals, personal care products, perfluorinated compounds, pesticides, pyrethroid insecticides, flame retardants, and persistent organic pollutants. Data obtained were summarized with some basic statistics for all compound families and matrices analyzed. Observed occurrence and spatial patterns were interpreted both in terms of compound physical-chemical properties and local environmental pressures. Finally, their spatial distribution was examined and their ecotoxicological risk in the water phase was assessed. This allowed locating, at each basin, the most polluted sites ("hot spots") and identifying the respective river basin specific pollutants (RBSPs), prioritizing them in terms of the potential ecotoxicological risk posed to the aquatic ecosystems.

2.
Environ Pollut ; 274: 115813, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257154

RESUMEN

Delta ecosystems are areas of high ecologic and economic values, where wildlife commonly shares the territory with intensive agricultural activities, particularly, rice cultivation and seafood production. This work aimed at evaluating the occurrence of a wide spectrum of pesticides and transformation products in the water of irrigation and drainage channels of the Ebro River Delta (NE Spain) during the main rice-growing season, when pesticide application is at its peak. Furthermore, the impact that these contaminants may have on local ecosystems and seafood production activities was assessed. A total of 35 pesticides, mainly associated with rice cultivation, out of the 66 analyzed were detected. Bentazone, propanil, MCPA, acetamiprid, and triallate were found at the µg/L level. Cybutryne, despite being banned in the European Union, was measured for the first time in the area and at concentrations above its environmental quality standard (11-49 ng/L). Sixteen additional banned pesticides were also detected at trace levels, likely due to their desorption from soil and sediment particles. Despite its dilution when discharged into the bay, this study demonstrates that the agricultural use of pesticides may have important effects on water quality and may cause a serious hazard for aquatic non-target organisms, although other factors such as temperature and salinity may play also a relevant role. Bentazone, cybutryne, dicofol, imidacloprid, MCPA, and propanil may pose a moderate to high risk for aquatic organisms at the concentration levels measured during the rice-growing season. The co-occurrence of pesticides may result in a high risk for aquatic organisms in all sampling locations. The finding of the EU Watch List insecticides imidacloprid and acetamiprid at concentrations above their maximum acceptable method detection limit calls for control of their use and revision of their legal status.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Agricultura , Organismos Acuáticos , Ecosistema , Monitoreo del Ambiente , Plaguicidas/análisis , Medición de Riesgo , Ríos , España , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 745: 140650, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32736100

RESUMEN

Water is an essential resource for all living organisms. The continuous and increasing use of pesticides in agricultural and urban activities results in the pollution of water resources and represents an environmental risk. To control and reduce pesticide pollution, reliable multi-residue methods for the detection of these compounds in water are needed. In this context, the present work aimed at providing an analytical method for the simultaneous determination of trace levels of 51 target pesticides in water and applying it to the investigation of the target pesticides in two agriculture-impacted areas of interest. The method developed, based on an isotopic dilution approach and on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry, is fast, simple, and to a large extent automated, and allows the analysis of most of the target compounds in compliance with European regulations. Application of the method to the analysis of selected water samples collected at the lowest stretches of the two largest river basins of Catalonia (NE Spain), Llobregat and Ter, revealed the presence of a wide suite of pesticides in the Llobregat basin, some of them at concentrations above the water quality standards (irgarol and dichlorvos) or the acceptable method detection limits (methiocarb, imidacloprid, and thiacloprid), and much cleaner waters in the Ter River basin. Risk assessment of the pesticide concentrations measured in the Llobregat River indicated high risk due to the presence of irgarol, dichlorvos, methiocarb, azinphos ethyl, imidacloprid, and diflufenican (hazard quotient (HQ) values>10), and moderate potential risk in the Ter River, associated to the occurrence of bentazone and irgarol (HQ > 1).

4.
Environ Pollut ; 265(Pt B): 114579, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32806438

RESUMEN

The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.


Asunto(s)
Microalgas , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Agua
5.
Anal Bioanal Chem ; 411(30): 7981-7996, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31761954

RESUMEN

The occurrence of polar pesticides in sediments has not been extensively investigated because of their relatively poor hydrophobicity and apparently less persistence in the environment. However, their continuous release into the aquatic systems calls for the evaluation of their potential accumulation in sediments and the role of this matrix as a potential source of these compounds. Considering this, a method based on pressurized liquid extraction (PLE), extract clean-up by solid phase extraction (SPE), and analyte determination by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated to analyze 50 relevant (frequently used and/or regulated or found in water) medium to highly polar pesticides in sediments. The method showed good performance regarding accuracy (relative recoveries between 76 and 124%), precision (relative standard deviation values < 20%), sensitivity (LODs in the low nanogram per gram for most compounds), linearity (coefficients of determination > 0.99), and matrix effects (negligible for all analytes). The use of an isotope dilution approach for quantification ensures result reliability. As a part of the validation process, the method was applied to the analysis of the target pesticides in sediments from the Llobregat River (NE Spain) showing the presence of five of them, namely, terbutryn, dichlorvos, terbuthylazine, diazinon, and irgarol. All 5 pesticides, due to both the concentrations found and their physical-chemical characteristics, demonstrate high potential for bioaccumulation and risk to aquatic organisms. Additional multi-disciplinary studies that investigate pesticide occurrence in different aquatic compartments and evaluate the potential risks for aquatic ecosystems are required to assess the environmental impact and significance of the presence of pesticides in sediments. Graphical Abstract.

6.
Sci Total Environ ; 653: 958-967, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30759621

RESUMEN

Pesticide pollution in water has been well described; however, little is known on pesticide accumulation by aquatic organisms, and to date, most studies in this line have been focused on persistent organochlorine pesticides. For this reason, a method based on QuEChERS extraction and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis has been developed and validated for the determination of 52 medium to highly polar pesticides in fresh fish muscle. Target pesticides were selected on the basis of use and occurrence in surface waters. Quantification is carried out following an isotope dilution approach. The method developed is satisfactory in terms of accuracy (relative recoveries between 71 and 120%), precision (relative standard deviations below 21%) and sensitivity (limits of determination in the pg/g or low ng/g f.w. range for most compounds). The application of the validated methodology to fish specimens collected from the Adige River (Italy) revealed the presence of trace levels of diazinon, dichlorvos and diuron, and measurable levels of metolachlor, quinoxyfen, irgarol, terbutryn, and acetamiprid, but in all cases at concentrations below the default maximum residue level of 10 ng/g established for pesticides not specifically regulated in fish intended for human consumption. Metolachlor and quinoxyfen were both the most ubiquitous and abundant pesticides, in agreement with their high potential for bioaccumulation. Both are toxic to aquatic organisms, and therefore, their potential effects on aquatic ecosystems should be further explored.


Asunto(s)
Monitoreo del Ambiente/métodos , Peces , Músculos/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Animales , Cromatografía Liquida , Límite de Detección , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
7.
Sci Total Environ ; 647: 1179-1187, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30180326

RESUMEN

The hydrological and biological complexity of temporary rivers as well as their importance in providing goods and services is increasingly recognized, as much as it is the vulnerability of the biotic communities in view of climate change and increased anthropogenic pressures. However, the effects of flow intermittency (resulting from both seasonal variations and rising hydrological pressure) and pollution on biodiversity and ecosystem functioning have been overlooked in these ecosystems. We explore the way multiple stressors affect biodiversity and ecosystem functioning, as well as the biodiversity-ecosystem functioning (B-EF) relationship in a Mediterranean temporary river. We measured diversity of benthic communities (i.e. diatoms and macroinvertebrates) and related ecosystem processes (i.e. resource use efficiency-RUE and organic matter breakdown-OMB) across a pollution and flow intermittency gradient. Our results showed decreases in macroinvertebrate diversity and the opposite trend in diatom assemblages, whereas ecosystem functioning was negatively affected by both pollution and flow intermittency. The explored B-EF relationships showed contrasting results: RUE decreased with higher diatom diversity, whereas OMB increased with increased macroinvertebrate diversity. The different responses suggest contrasting operating mechanisms, selection effects possibly driving the B-EF relationship in diatoms and complementarity effects driving the B-EF relationship in macroinvertebrates. The understanding of multiple stressor effects on diversity and ecosystem functioning, as well as the B-EF relationship in temporary rivers could provide insights on the risks affecting ecosystem functioning under global change.


Asunto(s)
Biodiversidad , Ecosistema , Monitoreo del Ambiente , Animales , Invertebrados , Región Mediterránea , Ríos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...