Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ann Biomed Eng ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097542

RESUMEN

PURPOSE: Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks. METHODS: We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics). RESULTS: Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data. DISCUSSION: The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.

2.
Ann Biomed Eng ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980544

RESUMEN

Currently, there are no methods or tools available in clinical practice for classifying future knee osteoarthritis (KOA). In this study, we aimed to fill this gap by classifying future KOA into three severity grades: KL01 (healthy), KL2 (moderate), and KL34 (severe) based on the Kellgren-Lawrance scale. Due to the complex nature of multiclass classification, we used a two-stage method, which separates the classification task into two binary classifications (KL01 vs. KL234 in the first stage and KL2 vs. KL34 in the second stage). Our machine learning (ML) model used two Balanced Random Forest algorithms and was trained with gender, age, height, weight, and quantitative knee morphology obtained from magnetic resonance imaging. Our training dataset comprised longitudinal 8-year follow-up data of 1213 knees from the Osteoarthritis Initiative. Through extensive experimentation with various feature combinations, we identified KL baseline and weight as the most essential features, while gender surprisingly proved to be one of the least influential feature. Our best classification model generated a weighted F1 score of 79.0% and a balanced accuracy of 65.9%. The area under the receiver operating characteristic curve was 83.0% for healthy (KL01) versus moderate (KL2) or severe (KL34) KOA patients and 86.6% for moderate (KL2) versus severe (KL34) KOA patients. We found a statistically significant difference in performance between our two-stage classification model and the traditional single-stage classification model. These findings demonstrate the encouraging results of our two-stage classification model for multiclass KOA severity classification, suggesting its potential application in clinical settings in future.

3.
J Orthop Res ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031826

RESUMEN

Obesity is a known risk factor for development of osteoarthritis (OA). Numerical tools like finite-element (FE) models combined with degenerative algorithms have been developed to understand the interplay between OA and obesity. In this study, we aimed to predict knee cartilage degeneration in a cohort of obese adults to investigate the importance of patient-specific information on degeneration predictions. We used a validated FE modeling approach and three different age-dependent functions (step-wise, exponential, and linear) to simulate cartilage degradation under overloading in the knee joint. Gait motion analysis and magnetic resonance imaging data from 115 obese individuals with knee OA were used for musculoskeletal and FE modeling. Cartilage degeneration predictions were contrasted with Kellgren-Lawrence (KL) and Boston-Leeds Osteoarthritis Knee Score (BLOKS) grades. The findings show that overall, the similarities between numerical predictions and clinical measures were better for the medial (average area under the curve (AUC) = 0.62) compared to the lateral compartment (average AUC = 0.52) of the knee. Classification results for KL grades, full patient-specific models and patient-specific geometry with generic gait data showed higher AUC values (AUC = 0.71 and AUC = 0.68, respectively) compared to generic geometry and patient-specific gait (AUC = 0.48). For BLOKS grades, AUC values for both full patient-specific models and for patient-specific geometry with generic gait locomotion were higher (AUC = 0.66 and AUC = 0.64, respectively) compared to when the generic geometry and patient-specific gait were used (AUC = 0.53). In summary, our study highlights the importance of considering individual information in knee OA prediction. Nevertheless, our findings suggest that personalized gait play a smaller role in the OA prediction and classification capacity than personalized joint geometry.

4.
Ann Biomed Eng ; 52(9): 2569-2583, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38842728

RESUMEN

Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.


Asunto(s)
Análisis de Elementos Finitos , Articulación de la Rodilla , Redes Neurales de la Computación , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/clasificación , Femenino , Masculino , Persona de Mediana Edad , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiopatología , Anciano , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/fisiopatología , Modelos Biológicos , Soporte de Peso , Marcha/fisiología
5.
J Biomech ; 169: 112135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38744145

RESUMEN

Articular cartilage exhibits site-specific biomechanical properties. However, no study has comprehensively characterized site-specific cartilage properties from the same knee joints at different stages of osteoarthritis (OA). Cylindrical osteochondral explants (n = 381) were harvested from donor-matched lateral and medial tibia, lateral and medial femur, patella, and trochlea of cadaveric knees (N = 17). Indentation test was used to measure the elastic and viscoelastic mechanical properties of the samples, and Osteoarthritis Research Society International (OARSI) grading system was used to categorize the samples into normal (OARSI 0-1), early OA (OARSI 2-3), and advanced OA (OARSI 4-5) groups. OA-related changes in cartilage mechanical properties were site-specific. In the lateral and medial tibia and trochlea sites, equilibrium, instantaneous and dynamic moduli were higher (p < 0.001) in normal tissue than in early and advanced OA tissue. In lateral and medial femur, equilibrium, instantaneous and dynamic moduli were smaller in advanced OA, but not in early OA, than in normal tissue. The phase difference (0.1-0.25 Hz) between stress and strain was significantly smaller (p < 0.05) in advanced OA than in normal tissue across all sites except medial tibia. Our results indicated that in contrast to femoral and patellar cartilage, equilibrium, instantaneous and dynamic moduli of the tibia and trochlear cartilage decreased in early OA. These may suggest that the tibia and trochlear cartilage degrades faster than the femoral and patellar cartilage. The information is relevant for developing site-specific computational models and engineered cartilage constructs.


Asunto(s)
Cartílago Articular , Articulación de la Rodilla , Osteoartritis de la Rodilla , Humanos , Cartílago Articular/fisiopatología , Cartílago Articular/fisiología , Cartílago Articular/patología , Articulación de la Rodilla/fisiopatología , Anciano , Osteoartritis de la Rodilla/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Fenómenos Biomecánicos , Elasticidad , Viscosidad , Tibia/fisiopatología , Fémur/fisiopatología , Fémur/fisiología , Anciano de 80 o más Años , Adulto , Estrés Mecánico
6.
J Orthop Res ; 42(9): 1964-1973, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38650428

RESUMEN

Magnetic resonance imaging (MRI) offers superior soft tissue contrast compared to clinical X-ray imaging methods, while also providing accurate three-dimensional (3D) geometries, it could be reasoned to be the best imaging modality to create 3D finite element (FE) geometries of the knee joint. However, MRI may not necessarily be superior for making tissue-level FE simulations of internal stress distributions within knee joint, which can be utilized to calculate subject-specific risk for the onset and development of knee osteoarthritis (KOA). Specifically, MRI does not provide any information about tissue stiffness, as the imaging is usually performed with the patient lying on their back. In contrast, native X-rays taken while the patient is standing indirectly reveal information of the overall health of the knee that is not seen in MRI. To determine the feasibility of X-ray workflow to generate FE models based on the baseline information (clinical image data and subject characteristics), we compared MRI and X-ray-based simulations of volumetric cartilage degenerations (N = 1213) against 8-year follow-up data. The results suggest that X-ray-based predictions of KOA are at least as good as MRI-based predictions for subjects with no previous knee injuries. This finding may have important implications for preventive care, as X-ray imaging is much more accessible than MRI.


Asunto(s)
Análisis de Elementos Finitos , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/fisiopatología , Femenino , Persona de Mediana Edad , Masculino , Anciano , Radiografía
7.
J Orthop Res ; 42(2): 326-338, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37644668

RESUMEN

Gait modification is a common nonsurgical approach to alter the mediolateral distribution of knee contact forces, intending to decelerate or postpone the progression of mechanically induced knee osteoarthritis (KOA). Nevertheless, the success rate of these approaches is controversial, with no studies conducted to assess alterations in tissue-level knee mechanics governing cartilage degradation response in KOA patients undertaking gait modifications. Thus, here we investigated the effect of different conventional gait conditions and modifications on tissue-level knee mechanics previously suggested as indicators of collagen network damage, cell death, and loss of proteoglycans in knee cartilage. Five participants with medial KOA were recruited and musculoskeletal finite element analyses were conducted to estimate subject-specific tissue mechanics of knee cartilages during two gait conditions (i.e., barefoot and shod) and six gait modifications (i.e., 0°, 5°, and 10° lateral wedge insoles, toe-in, toe-out, and wide stance). Based on our results, the optimal gait modification varied across the participants. Overall, toe-in, toe-out, and wide stance showed the greatest reduction in tissue mechanics within medial tibial and femoral cartilages. Gait modifications could effectually alter maximum principal stress (~20 ± 7%) and shear strain (~9 ± 4%) within the medial tibial cartilage. Nevertheless, lateral wedge insoles did not reduce joint- and tissue-level mechanics considerably. Significance: This proof-of-concept study emphasizes the importance of the personalized design of gait modifications to account for biomechanical risk factors associated with cartilage degradation.


Asunto(s)
Articulación de la Rodilla , Osteoartritis de la Rodilla , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla/fisiología , Marcha/fisiología , Extremidad Inferior
8.
J Biomech ; 160: 111800, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37797566

RESUMEN

Fibril-reinforced poroviscoelastic material models are considered state-of-the-art in modeling articular cartilage biomechanics. Yet, cartilage material parameters are often based on bovine tissue properties in computational knee joint models, although bovine properties are distinctly different from those of humans. Thus, we aimed to investigate how cartilage mechanical responses are affected in the knee joint model during walking when fibril-reinforced poroviscoelastic properties of cartilage are based on human data instead of bovine. We constructed a finite element knee joint model in which tibial and femoral cartilages were modeled as fibril-reinforced poroviscoelastic material using either human or bovine data. Joint loading was based on subject-specific gait data. The resulting mechanical responses of knee cartilage were compared between the knee joint models with human or bovine fibril-reinforced poroviscoelastic cartilage properties. Furthermore, we conducted a sensitivity analysis to determine which fibril-reinforced poroviscoelastic material parameters have the greatest impact on cartilage mechanical responses in the knee joint during walking. In general, bovine cartilage properties yielded greater maximum principal stresses and fluid pressures (both up to 30%) when compared to the human cartilage properties during the loading response in both femoral and tibial cartilage sites. Cartilage mechanical responses were very sensitive to the collagen fibril-related material parameter variations during walking while they were unresponsive to proteoglycan matrix or fluid flow-related material parameter variations. Taken together, human cartilage material properties should be accounted for when the goal is to compare absolute mechanical responses of knee joint cartilage as bovine material parameters lead to substantially different cartilage mechanical responses.

9.
Ann Biomed Eng ; 51(11): 2479-2489, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37335376

RESUMEN

Joint loading may affect the development of osteoarthritis, but patient-specific load estimation requires cumbersome motion laboratory equipment. This reliance could be eliminated using artificial neural networks (ANNs) to predict loading from simple input predictors. We used subject-specific musculoskeletal simulations to estimate knee joint contact forces for 290 subjects during over 5000 stance phases of walking and then extracted compartmental and total joint loading maxima from the first and second peaks of the stance phase. We then trained ANN models to predict the loading maxima from predictors that can be measured without motion laboratory equipment (subject mass, height, age, gender, knee abduction-adduction angle, and walking speed). When compared to the target data, our trained models had NRMSEs (RMSEs normalized to the mean of the response variable) between 0.14 and 0.42 and Pearson correlation coefficients between 0.42 and 0.84. The loading maxima were predicted most accurately using the models trained with all predictors. We demonstrated that prediction of knee joint loading maxima may be possible without laboratory-measured motion capture data. This is a promising step in facilitating knee joint loading predictions in simple environments, such as a physician's appointment. In future, the rapid measurement and analysis setup could be utilized to guide patients in rehabilitation to slow development of joint disorders, such as osteoarthritis.


Asunto(s)
Marcha , Osteoartritis de la Rodilla , Humanos , Marcha/fisiología , Fenómenos Biomecánicos , Articulación de la Rodilla/fisiología , Caminata/fisiología , Redes Neurales de la Computación
10.
Ann Biomed Eng ; 51(10): 2245-2257, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37332006

RESUMEN

Osteoarthritis degenerates cartilage and impairs joint function. Early intervention opportunities are missed as current diagnostic methods are insensitive to early tissue degeneration. We investigated the capability of visible light-near-infrared spectroscopy (Vis-NIRS) to differentiate normal human cartilage from early osteoarthritic one. Vis-NIRS spectra, biomechanical properties and the state of osteoarthritis (OARSI grade) were quantified from osteochondral samples harvested from different anatomical sites of human cadaver knees. Two support vector machines (SVM) classifiers were developed based on the Vis-NIRS spectra and OARSI scores. The first classifier was designed to distinguish normal (OARSI: 0-1) from general osteoarthritic cartilage (OARSI: 2-5) to check the general suitability of the approach yielding an average accuracy of 75% (AUC = 0.77). Then, the second classifier was designed to distinguish normal from early osteoarthritic cartilage (OARSI: 2-3) yielding an average accuracy of 71% (AUC = 0.73). Important wavelength regions for differentiating normal from early osteoarthritic cartilage were related to collagen organization (wavelength region: 400-600 nm), collagen content (1000-1300 nm) and proteoglycan content (1600-1850 nm). The findings suggest that Vis-NIRS allows objective differentiation of normal and early osteoarthritic tissue, e.g., during arthroscopic repair surgeries.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/diagnóstico por imagen , Espectroscopía Infrarroja Corta , Articulación de la Rodilla/diagnóstico por imagen , Colágeno
11.
Sci Rep ; 13(1): 8888, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264050

RESUMEN

New technologies are required to support a radical shift towards preventive healthcare. Here we focus on evaluating the possibility of finite element (FE) analysis-aided prevention of knee osteoarthritis (OA), a disease that affects 100 million citizens in the US and EU and this number is estimated to increase drastically. Current clinical methods to diagnose or predict joint health status relies on symptoms and tissue failures obtained from clinical imaging. In a joint with no detectable injuries, the diagnosis of the future health of the knee can be assumed to be very subjective. Quantitative approaches are therefore needed to assess the personalized risk for the onset and development of knee OA. FE analysis utilizing an atlas-based modeling approach has shown a preliminary capability for simulating subject-specific cartilage mechanical responses. However, it has been verified with a very limited subject number. Thus, the aim of this study is to verify the real capability of the atlas-based approach to simulate cartilage degeneration utilizing different material descriptions for cartilage. A fibril reinforced poroviscoelastic (FRPVE) material formulation was considered as state-of-the-art material behavior, since it has been preliminary validated against real clinical follow-up data. Simulated mechanical tissue responses and predicted cartilage degenerations within knee joint with FRPVE material were compared against simpler constitutive models for cartilage. The capability of the atlas-based modeling to offer a feasible approach with quantitative evaluation for the risk for the OA development (healthy vs osteoarthritic knee, p < 0.01, AUC ~ 0.7) was verified with 214 knees. Furthermore, the results suggest that accuracy for simulation of cartilage degeneration with simpler material models is similar to models using FPRVE materials if the material parameters are chosen properly.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Análisis de Elementos Finitos , Cartílago Articular/diagnóstico por imagen , Modelos Biológicos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiología , Imagen por Resonancia Magnética
12.
Ann Biomed Eng ; 51(10): 2192-2203, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37284996

RESUMEN

Computational models can be used to predict the onset and progression of knee osteoarthritis. Ensuring the transferability of these approaches among computational frameworks is urgent for their reliability. In this work, we assessed the transferability of a template-based modeling strategy, based on the finite element (FE) method, by implementing it on two different FE softwares and comparing their results and conclusions. For that, we simulated the knee joint cartilage biomechanics of 154 knees using healthy baseline conditions and predicted the degeneration that occurred after 8 years of follow-up. For comparisons, we grouped the knees using their Kellgren-Lawrence grade at the 8-year follow-up time and the simulated volume of cartilage tissue that exceeded age-dependent thresholds of maximum principal stress. We considered the medial compartment of the knee in the FE models and used ABAQUS and FEBio FE softwares for simulations. The two FE softwares detected different volumes of overstressed tissue in corresponding knee samples (p < 0.01). However, both programs correctly distinguished between the joints that remained healthy and those that developed severe osteoarthritis after the follow-up (AUC = 0.73). These results indicate that different software implementations of a template-based modeling method similarly classify future knee osteoarthritis grades, motivating further evaluations using simpler cartilage constitutive models and additional studies on the reproducibility of these modeling strategies.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico , Reproducibilidad de los Resultados , Articulación de la Rodilla , Fenómenos Biomecánicos , Imagen por Resonancia Magnética/métodos
13.
Comput Methods Biomech Biomed Engin ; 26(16): 2008-2021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36645841

RESUMEN

Mechanical behavior of meniscus can be modeled using constitutive material models of varying complexity, such as isotropic elastic or fibril reinforced poroelastic (FRPE). However, the FRPE material is complex to implement, computationally demanding in 3D geometries, and simulation is time-consuming. Hence, we aimed to quantify the most suitable and efficient constitutive model of meniscus for simulation of cartilage responses in the knee joint during walking. We showed that simpler constitutive material models can reproduce similar cartilage responses to a knee model with the FRPE meniscus, but only knee models that consider orthotropic elastic meniscus can also reproduce meniscus responses adequately.


Asunto(s)
Cartílago Articular , Menisco , Fenómenos Biomecánicos , Estrés Mecánico , Análisis de Elementos Finitos , Modelos Biológicos , Articulación de la Rodilla/fisiología , Marcha/fisiología , Cartílago Articular/fisiología
14.
Comput Methods Biomech Biomed Engin ; 26(11): 1353-1367, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36062938

RESUMEN

We developed a novel knee joint model in FEBio to simulate walking. Knee cartilage was modeled using a fibril-reinforced biphasic (FRB) formulation with depth-wise collagen architecture and split-lines to account for cartilage structure. Under axial compression, the knee model with FRB cartilage yielded contact pressures, similar to reported experimental data. Furthermore, gait analysis with FRB cartilage simulated spatial and temporal trends in cartilage fluid pressures, stresses, and strains, comparable to those of a fibril-reinforced poroviscoelastic (FRPVE) material in Abaqus. This knee joint model in FEBio could be used for further studies of knee disorders using physiologically relevant loading.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/fisiología , Análisis de Elementos Finitos , Articulación de la Rodilla/fisiología , Marcha/fisiología , Estrés Mecánico , Modelos Biológicos , Fenómenos Biomecánicos
15.
Artículo en Inglés | MEDLINE | ID: mdl-35286263

RESUMEN

Tissue-level mechanics (e.g., stress and strain) are important factors governing tissue remodeling and development of knee osteoarthritis (KOA), and hence, the success of physical rehabilitation. To date, no clinically feasible analysis toolbox has been introduced and used to inform clinical decision making with subject-specific in-depth joint mechanics of different activities. Herein, we utilized a rapid state-of-the-art electromyography-assisted musculoskeletal finite element analysis toolbox with fibril-reinforced poro(visco)elastic cartilages and menisci to investigate knee mechanics in different activities. Tissue mechanical responses, believed to govern collagen damage, cell death, and fixed charge density loss of proteoglycans, were characterized within 15 patients with KOA while various daily activities and rehabilitation exercises were performed. Results showed more inter-participant variation in joint mechanics during rehabilitation exercises compared to daily activities. Accordingly, the devised workflow may be used for designing subject-specific rehabilitation protocols. Further, results showed the potential to tailor rehabilitation exercises, or assess capacity for daily activity modifications, to optimally load knee tissue, especially when mechanically-induced cartilage degeneration and adaptation are of interest.


Asunto(s)
Cartílago Articular , Fenómenos Biomecánicos , Cartílago Articular/metabolismo , Electromiografía , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla/fisiología , Proteoglicanos/metabolismo , Estrés Mecánico
17.
Ann Biomed Eng ; 50(6): 666-679, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35262835

RESUMEN

Finite element (FE) modeling is becoming an increasingly popular method for analyzing knee joint mechanics and biomechanical mechanisms leading to osteoarthritis (OA). The most common and widely available imaging method for knee OA diagnostics is planar X-ray imaging, while more sophisticated imaging methods, e.g., magnetic resonance imaging (MRI) and computed tomography (CT), are seldom used. Hence, the capability to produce accurate biomechanical knee joint models directly from X-ray imaging would bring FE modeling closer to clinical use. Here, we extend our atlas-based framework by generating FE knee models from X-ray images (N = 28). Based on measured anatomical landmarks from X-ray and MRI, knee joint templates were selected from the atlas library. The cartilage stresses and strains of the X-ray-based model were then compared with the MRI-based model during the stance phase of the gait. The biomechanical responses were statistically not different between MRI- vs. X-ray-based models when the template obtained from X-ray imaging was the same as the MRI template. However, if this was not the case, the peak values of biomechanical responses were statistically different between X-ray and MRI models. The developed X-ray-based framework may pave the way for a clinically feasible approach for knee joint FE modeling.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Fenómenos Biomecánicos , Cartílago Articular/fisiología , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla/fisiología , Osteoartritis de la Rodilla/patología , Caminata , Rayos X
18.
IEEE Trans Biomed Eng ; 69(9): 2860-2871, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35239473

RESUMEN

Joint tissue mechanics (e.g., stress and strain) are believed to have a major involvement in the onset and progression of musculoskeletal disorders, e.g., knee osteoarthritis (KOA). Accordingly, considerable efforts have been made to develop musculoskeletal finite element (MS-FE) models to estimate highly detailed tissue mechanics that predict cartilage degeneration. However, creating such models is time-consuming and requires advanced expertise. This limits these complex, yet promising, MS-FE models to research applications with few participants and makes the models impractical for clinical assessments. Also, these previously developed MS-FE models have not been used to assess activities other than gait. This study introduces and verifies a semi-automated rapid state-of-the-art MS-FE modeling and simulation toolbox incorporating an electromyography- (EMG) assisted MS model and a muscle-force driven FE model of the knee with fibril-reinforced poro(visco)elastic cartilages and menisci. To showcase the usability of the pipeline, we estimated joint- and tissue-level knee mechanics in 15 KOA individuals performing different daily activities. The pipeline was verified by comparing the estimated muscle activations and joint mechanics to existing experimental data. To determine the importance of the EMG-assisted MS analysis approach, results were compared to those from the same FE models but driven by static-optimization-based MS models. The EMG-assisted MS-FE pipeline bore a closer resemblance to experiments compared to the static-optimization-based MS-FE pipeline. Importantly, the developed pipeline showed great potential as a rapid MS-FE analysis toolbox to investigate multiscale knee mechanics during different activities of individuals with KOA.


Asunto(s)
Articulación de la Rodilla , Fenómenos Mecánicos , Fenómenos Biomecánicos , Electromiografía , Análisis de Elementos Finitos , Marcha/fisiología , Humanos , Articulación de la Rodilla/fisiología , Modelos Biológicos , Músculos
19.
PLoS One ; 17(2): e0263458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35130332

RESUMEN

PURPOSE: The incidence of acetabular fractures due to low-energy falls is increasing among the geriatric population. Studies have shown that several biomechanical factors such as body configuration, impact velocity, and trochanteric soft-tissue thickness contribute to the severity and type of acetabular fracture. The effect of reduction in apparent density and elastic modulus of bone as well as other bone mechanical properties due to osteoporosis on low-energy acetabular fractures has not been investigated. METHODS: The current comprehensive finite element study aimed to study the effect of reduction in bone mechanical properties (trabecular, cortical, and trabecular + cortical) on the risk and type of acetabular fracture. Also, the effect of reduction in the mechanical properties of bone on the load-transferring mechanism within the pelvic girdle was examined. RESULTS: We observed that while the reduction in the mechanical properties of trabecular bone considerably affects the severity and area of trabecular bone failure, reduction in mechanical properties of cortical bone moderately influences both cortical and trabecular bone failure. The results also indicated that by reducing bone mechanical properties, the type of acetabular fracture turns from elementary to associated, which requires a more extensive intervention and rehabilitation period. Finally, we observed that the cortical bone plays a substantial role in load transfer, and by increasing reduction in the mechanical properties of cortical bone, a greater share of load is transmitted toward the pubic symphysis. CONCLUSION: This study increases our understanding of the effect of osteoporosis progression on the incidence of low-energy acetabular fractures. The osteoporosis-related reduction in the mechanical properties of cortical bone appears to affect both the cortical and trabecular bones. Also, during the extreme reduction in the mechanical properties of bone, the acetabular fracture type will be more complicated. Finally, during the final stages of osteoporosis (high reduction in mechanical properties of bone) a smaller share of impact load is transferred by impact-side hemipelvis to the sacrum, therefore, an osteoporotic pelvis might mitigate the risk of sacral fracture.


Asunto(s)
Accidentes por Caídas , Acetábulo/lesiones , Fenómenos Biomecánicos/fisiología , Fracturas Óseas/fisiopatología , Osteoporosis/fisiopatología , Accidentes por Caídas/estadística & datos numéricos , Acetábulo/fisiopatología , Anciano , Anciano de 80 o más Años , Módulo de Elasticidad , Femenino , Análisis de Elementos Finitos , Fracturas Óseas/etiología , Fracturas de Cadera/etiología , Fracturas de Cadera/fisiopatología , Humanos , Imagenología Tridimensional , Masculino , Modelos Anatómicos , Osteoporosis/complicaciones , Postura/fisiología , Fracturas de la Columna Vertebral/etiología , Fracturas de la Columna Vertebral/fisiopatología , Estrés Mecánico , Soporte de Peso/fisiología
20.
J Orthop Res ; 40(8): 1744-1755, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34820897

RESUMEN

The aims of this case-control study were to: (1) Identify cartilage locations and volumes at risk of osteoarthritis (OA) using subject-specific finite element (FE) models; (2) Quantify the relationships between the simulated biomechanical parameters and T2 and T1ρ relaxation times of magnetic resonance imaging (MRI). We created subject-specific FE models for seven patients with anterior cruciate ligament (ACL) reconstruction and six controls based on a previous proof-of-concept study. We identified locations and cartilage volumes susceptible to OA, based on maximum principal stresses and absolute maximum shear strains in cartilage exceeding thresholds of 7 MPa and 32%, respectively. The locations and volumes susceptible to OA were compared qualitatively and quantitatively against 2-year longitudinal changes in T2 and T1ρ relaxation times. The degeneration volumes predicted by the FE models, based on excessive maximum principal stresses, were significantly correlated (r = 0.711, p < 0.001) with the degeneration volumes determined from T2 relaxation times. There was also a significant correlation between the predicted stress values and changes in T2 relaxation time (r = 0.649, p < 0.001). Absolute maximum shear strains and changes in T1ρ relaxation time were not significantly correlated. Five out of seven patients with ACL reconstruction showed excessive maximum principal stresses in either one or both tibial cartilage compartments, in agreement with follow-up information from MRI. Expectedly, for controls, the FE models and follow-up information showed no degenerative signs. Our results suggest that the presented modelling methodology could be applied to prospectively identify ACL reconstructed patients at risk of biomechanically driven OA, particularly by the analysis of maximum principal stresses of cartilage.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Cartílago Articular , Osteoartritis , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/patología , Lesiones del Ligamento Cruzado Anterior/cirugía , Cartílago Articular/patología , Estudios de Casos y Controles , Análisis de Elementos Finitos , Estudios de Seguimiento , Humanos , Articulación de la Rodilla/cirugía , Imagen por Resonancia Magnética/métodos , Osteoartritis/diagnóstico por imagen , Osteoartritis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA