Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 29(5): e01913, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31144784

RESUMEN

Marine resources stewardships are progressively becoming more receptive to an effective incorporation of both ecosystem and environmental complexities into the analytical frameworks of fisheries assessment. Understanding and predicting marine fish production for spatially and demographically complex populations in changing environmental conditions is however still a difficult task. Indeed, fisheries assessment is mostly based on deterministic models that lack realistic parameterizations of the intricate biological and physical processes shaping recruitment, a cornerstone in population dynamics. We use here a large metapopulation of a harvested fish, the European hake (Merluccius merluccius), managed across transnational boundaries in the northwestern Mediterranean, to model fish recruitment dynamics in terms of physics-dependent drivers related to dispersal and survival. The connectivity among nearby subpopulations is evaluated by simulating multi-annual Lagrangian indices of larval retention, imports, and self-recruitment. Along with a proxy of the regional hydroclimate influencing early life stages survival, we then statistically determine the relative contribution of dispersal and hydroclimate for recruitment across contiguous management units. We show that inter-annual variability of recruitment is well reproduced by hydroclimatic influences and synthetic connectivity estimates. Self-recruitment (i.e., the ratio of retained locally produced larvae to the total number of incoming larvae) is the most powerful metric as it integrates the roles of retained local recruits and immigrants from surrounding subpopulations and is able to capture circulation patterns affecting recruitment at the scale of management units. We also reveal that the climatic impact on recruitment is spatially structured at regional scale due to contrasting biophysical processes not related to dispersal. Self-recruitment calculated for each management unit explains between 19% and 32.9% of the variance of recruitment variability, that is much larger than the one explained by spawning stock biomass alone, supporting an increase of consideration of connectivity processes into stocks assessment. By acknowledging the structural and ecological complexity of marine populations, this study provides the scientific basis to link spatial management and temporal assessment within large marine metapopulations. Our results suggest that fisheries management could be improved by combining information of physical oceanography (from observing systems and operational models), opening new opportunities such as the development of short-term projections and dynamic spatial management.


Asunto(s)
Ecosistema , Peces , Animales , Explotaciones Pesqueras , Larva , Océanos y Mares , Dinámica Poblacional
2.
Chaos ; 29(1): 013115, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709136

RESUMEN

In an incompressible flow, fluid density remains invariant along fluid element trajectories. This implies that the spatial distribution of non-interacting noninertial particles in such flows cannot develop density inhomogeneities beyond those that are already introduced in the initial condition. However, in certain practical situations, density is measured or accumulated on (hyper-) surfaces of dimensionality lower than the full dimensionality of the flow in which the particles move. An example is the observation of particle distributions sedimented on the floor of the ocean. In such cases, even if the initial distribution of noninertial particles is uniform but its support is finite, advection in an incompressible flow will give rise to inhomogeneities in the observed density. In this paper, we analytically derive, in the framework of an initially homogeneous particle sheet sedimenting toward a bottom surface, the relationship between the geometry of the flow and the emerging distribution. From a physical point of view, we identify the two processes that generate inhomogeneities to be the stretching within the sheet and the projection of the deformed sheet onto the target surface. We point out that an extreme form of inhomogeneity, caustics, can develop for sheets. We exemplify our geometrical results with simulations of particle advection in a simple kinematic flow, study the dependence on various parameters involved, and illustrate that the basic mechanisms work similarly if the initial (homogeneous) distribution occupies a more general region of finite extension rather than a sheet.

3.
Am J Bot ; 106(2): 303-312, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742704

RESUMEN

PREMISE OF THE STUDY: We tested a hypothesis that predicts loss of chemical defenses on island plant populations (LCDIH) as an evolutionary response to limited herbivore pressures. METHODS: Using a common garden approach, we grew 16 populations (N = 286 seedlings) of Periploca laevigata, a Mediterranean shrub for which previous studies suggested that animal browsing elicits defensive responses mediated by tannins. Our experimental setting represented a wide latitudinal gradient (37-15°N) encompassing three island systems, virtually free of large herbivores, and three mainland areas. Putative chemical defenses were estimated from tannin-protein precipitation assays, and inducible responses in growth and chemical traits were assessed between seasons and by subjecting plants to a pruning treatment. KEY RESULTS: We failed to find support for the LCDIH, since island populations (Canary Islands, Cape Verde) had increasingly higher constitutive levels of tannins at lower latitudes. Seasonality, but not experimental pruning, induced variation in levels of tannins in a consistent pattern across populations. Thus, net differences in leaf tannin concentration remained similar among geographical areas regardless of the factor considered, with latitude being the best explanatory factor for this trait over seasonal growth patterns. CONCLUSIONS: Geographical variation in total tannin pools appears to be mediated by factors other than herbivore pressure in P. laevigata. We hypothesize that abiotic correlates of latitude not considered in our study have promoted high constitutive levels of leaf tannins across Macaronesian populations, which ultimately may explain the pattern of seasonal variation and latitudinal increase from Mediterranean to subtropical Cape Verde populations.


Asunto(s)
Apocynaceae/metabolismo , Evolución Biológica , Islas , Metabolismo Secundario/genética , Taninos/metabolismo , Apocynaceae/genética , Apocynaceae/crecimiento & desarrollo , Islas del Atlántico , Región Mediterránea , Fenotipo
4.
Ann Bot ; 123(3): 557-568, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30380011

RESUMEN

BACKGROUND AND AIMS: Archipelagos provide a valuable framework for investigating phenotypic evolution under different levels of geographical isolation. Here, we analysed two co-distributed, widespread plant lineages to examine if incipient island differentiation follows parallel patterns of variation in traits related to dispersal and colonization. METHODS: Twenty-one populations of two anemochorous Canarian endemics, Kleinia neriifolia and Periploca laevigata, were sampled to represent mainland congeners and two contrasting exposures across all the main islands. Leaf size, seed size and dispersability (estimated as diaspore terminal velocity) were characterized in each population. For comparison, dispersability was also measured in four additional anemochorous island species. Plastid DNA data were used to infer genetic structure and to reconstruct the phylogeographical pattern of our focal species. KEY RESULTS: In both lineages, mainland-island phenotypic divergence probably started within a similar time frame (i.e. Plio-Pleistocene). Island colonization implied parallel increases in leaf size and dispersability, but seed size showed opposite patterns of variation between Kleinia and Periploca species pairs. Furthermore, dispersability in our focal species was low when compared with other island plants, mostly due to large diaspore sizes. At the archipelago scale, island exposure explained a significant variation in leaf size across islands, but not in dispersability or seed size. Combined analyses of genetic and phenotypic data revealed two consistent patterns: (1) extensive within-island but very limited among-island dispersal, and (2) recurrent phenotypic differentiation between older (central) and younger (peripheral) island populations. CONCLUSIONS: Leaf size follows a more predictable pattern than dispersability, which is affected by stochastic shifts in seed size. Increased dispersability is associated with high population connectivity at the island scale, but does not preclude allopatric divergence among islands. In sum, phenotypic convergent patterns between species suggest a major role of selection, but deviating traits also indicate the potential contribution of random processes, particularly on peripheral islands.


Asunto(s)
Asteraceae , Evolución Biológica , Rasgos de la Historia de Vida , Periploca , Dispersión de las Plantas , Islas , Filogeografía , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...