Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 13(6): 726-733, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38809767

RESUMEN

Plants, essential for food, oxygen, and economic stability, are under threat from human activities, biotic threats, and climate change, requiring rapid technological advancements for protection. Biohybrid systems, merging synthetic macromolecules with biological components, have provided improvement to biological systems in the past, namely, in the biomedical arena, motivating an opportunity to enhance plant well-being. Nevertheless, strategies for plant biohybrid systems remain limited. In this study, we present a method using grafting-from ring-opening metathesis polymerization (ROMP) under physiological conditions to integrate norbornene-derived polymers into live plants by spray coating. The approach involves creating biological macroinitiators on leaf surfaces, which enable subsequent polymerization of norbornene-derived monomers. Characterization techniques, including FTIR spectroscopy, SEM EDS imaging, ICP-MS, nanoindentation, and XPS, confirmed the presence and characterized the properties of the polymeric layers on leaves. The demonstrated modifiability and biocompatibility could offer the potential to maintain plant health in various applications, including the development of thermal barriers, biosensors, and crop protection layers.


Asunto(s)
Norbornanos , Hojas de la Planta , Norbornanos/química , Hojas de la Planta/química , Polimerizacion , Polímeros/química , Plásticos
2.
Front Plant Sci ; 13: 963756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110356

RESUMEN

Agriculture is facing new challenges, with global warming modifying the survival chances for crops, and new pests on the horizon. To keep up with these challenges, gene delivery provides tools to increase crop yields. On the other hand, gene delivery also opens the door for molecular farming of pharmaceuticals in plants. However, towards increased food production and scalable molecular farming, there remain technical difficulties and regulatory hurdles to overcome. The industry-standard is transformation of plants via Agrobacterium tumefaciens, but this method is limited to certain plants, requires set up of plant growth facilities and fermentation of bacteria, and introduces lipopolysaccharides contaminants into the system. Therefore, alternate methods are needed. Mechanical inoculation and spray methods have already been discussed in the literature - and here, we compare these methods with a newly introduced petiole injection technique. Because our interest lies in the development of plant viruses as immunotherapies targeting human health as well as gene delivery vectors for agriculture applications, we turned toward tobacco mosaic virus as a model system. We studied the effectiveness of three inoculation techniques: mechanical inoculation, Silwet-77 foliar spray and petiole injections. The foliar spray method was optimized, and we used 0.03% Silwet L-77 to induce infection using either TMV or a lysine-added mutant TMV-Lys. We developed a method using a needle-laden syringe to target and inject the plant virus directly into the vasculature of the plant - we tested injection into the stem and petiole. Stem inoculation resulted in toxicity, but the petiole injection technique was established as a viable strategy. TMV and TMV-Lys were purified from single plants and pooled leaf samples - overall there was little variation between the techniques, as measured by TMV or TMV-Lys yields, highlighting the feasibility of the syringe injection technique to produce virus nanoparticles. There was variation between yields from preparation to preparation with mechanical, spray and syringe inoculation yielding 40-141 mg, 36-56 mg, 18-56 mg TMV per 100 grams of leaves. Similar yields were obtained using TMV-Lys, with 24-38 mg, 17-28, 7-36 mg TMV-Lys per 100 grams of leaves for mechanical, spray and syringe inoculation, respectively. Each method has its advantages: spray inoculation is highly scalable and therefore may find application for farming, the syringe inoculation could provide a clean, aseptic, and controlled approach for molecular farming of pharmaceuticals under good manufacturing protocols (GMP) and would even be applicable for gene delivery to plants in space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...