Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512600

RESUMEN

Both the diversity and complexity of microfluidic systems have experienced a tremendous progress over the last decades, enabled by new materials, novel device concepts and innovative fabrication routes. In particular the subfield of high-throughput screening, used for biochemical, genetic and pharmacological samples, has extensively emerged from developments in droplet microfluidics. More recently, new 3D device architectures enabled either by stacking layers of PDMS or by direct 3D-printing have gained enormous attention for applications in chemical synthesis or biomedical assays. While the first microfluidic devices were based on silicon and glass structures, those materials have not yet been significantly expanded towards 3D despite their high chemical compatibility, mechanical strength or mass-production potential. In our work, we present a generic fabrication route based on the implementation of vertical vias and a redistribution layer to create glass-silicon-glass 3D microfluidic structures. It is used to build different droplet-generating devices with several flow-focusing junctions in parallel, all fed from a single source. We study the effect of having several of these junctions in parallel by varying the flow conditions of both the continuous and the dispersed phases. We demonstrate that the generic concept enables an upscaling in the production rate by increasing the number of droplet generators per device without sacrificing the monodispersity of the droplets.

2.
Microsyst Nanoeng ; 9: 81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342556

RESUMEN

Microfluidic systems are widely used in fundamental research and industrial applications due to their unique behavior, enhanced control, and manipulation opportunities of liquids in constrained geometries. In micrometer-sized channels, electric fields are efficient mechanisms for manipulating liquids, leading to deflection, injection, poration or electrochemical modification of cells and droplets. While PDMS-based microfluidic devices are used due to their inexpensive fabrication, they are limited in terms of electrode integration. Using silicon as the channel material, microfabrication techniques can be used to create nearby electrodes. Despite the advantages that silicon provides, its opacity has prevented its usage in most important microfluidic applications that need optical access. To overcome this barrier, silicon-on-insulator technology in microfluidics is introduced to create optical viewports and channel-interfacing electrodes. More specifically, the microfluidic channel walls are directly electrified via selective, nanoscale etching to introduce insulation segments inside the silicon device layer, thereby achieving the most homogeneous electric field distributions and lowest operation voltages feasible across microfluidic channels. These ideal electrostatic conditions enable a drastic energy reduction, as effectively shown via picoinjection and fluorescence-activated droplet sorting applications at voltages below 6 and 15 V, respectively, facilitating low-voltage electric field applications in next-generation microfluidics.

3.
Medicina (Kaunas) ; 59(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36984618

RESUMEN

Background and Objectives: Remote patient monitoring (RPM) of vital signs and symptoms for lung transplant recipients (LTRs) has become increasingly relevant in many situations. Nevertheless, RPM research integrating multisensory home monitoring in LTRs is scarce. We developed a novel multisensory home monitoring device and tested it in the context of COVID-19 vaccinations. We hypothesize that multisensory RPM and smartphone-based questionnaire feedback on signs and symptoms will be well accepted among LTRs. To assess the usability and acceptability of a remote monitoring system consisting of wearable devices, including home spirometry and a smartphone-based questionnaire application for symptom and vital sign monitoring using wearable devices, during the first and second SARS-CoV-2 vaccination. Materials and Methods: Observational usability pilot study for six weeks of home monitoring with the COVIDA Desk for LTRs. During the first week after the vaccination, intensive monitoring was performed by recording data on physical activity, spirometry, temperature, pulse oximetry and self-reported symptoms, signs and additional measurements. During the subsequent days, the number of monitoring assessments was reduced. LTRs reported on their perceptions of the usability of the monitoring device through a purpose-designed questionnaire. Results: Ten LTRs planning to receive the first COVID-19 vaccinations were recruited. For the intensive monitoring study phase, LTRs recorded symptoms, signs and additional measurements. The most frequent adverse events reported were local pain, fatigue, sleep disturbance and headache. The duration of these symptoms was 5-8 days post-vaccination. Adherence to the main monitoring devices was high. LTRs rated usability as high. The majority were willing to continue monitoring. Conclusions: The COVIDA Desk showed favorable technical performance and was well accepted by the LTRs during the vaccination phase of the pandemic. The feasibility of the RPM system deployment was proven by the rapid recruitment uptake, technical performance (i.e., low number of errors), favorable user experience questionnaires and detailed individual user feedback.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Receptores de Trasplantes , Dispositivos Electrónicos Vestibles , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Proyectos Piloto , Vacunación , Trasplante de Pulmón
4.
Adv Sci (Weinh) ; 9(20): e2200136, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35521972

RESUMEN

Ablation of materials in combination with element-specific analysis of the matter released is a widely used method to accurately determine a material's chemical composition. Among other methods, repetitive ablation using femto-second pulsed laser systems provides excellent spatial resolution through its incremental removal of nanometer thick layers. The method can be combined with high-resolution mass spectrometry, for example, laser ablation ionization mass spectrometry, to simultaneously analyze chemically the material released. With increasing depth of the volume ablated, however, secondary effects start to play an important role and the ablation geometry deviates substantially from the desired cylindrical shape. Consequently, primarily conical but sometimes even more complex, rather than cylindrical, craters are created. Their dimensions need to be analyzed to enable a direct correlation with the element-specific analytical signals. Here, a post-ablation analysis method is presented that combines generic polydimethylsiloxane-based molding of craters with the volumetric reconstruction of the crater's inverse using X-ray computed tomography. Automated analysis yields the full, sub-micron accurate anatomy of the craters, thereby a scalable and generic method to better understand the fundamentals underlying ablation processes applicable to a wide range of materials. Furthermore, it may serve toward a more accurate determination of heterogeneous material's composition for a variety of applications without requiring time- and labor-intensive analyses of individual craters.


Asunto(s)
Terapia por Láser , Rayos Láser , Espectrometría de Masas/métodos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...