Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(4): 109354, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500817

RESUMEN

Glia are the protectors of the nervous system, providing neurons with support and protection from cytotoxic insults. We previously discovered that four astrocyte-like glia can regulate organismal proteostasis and longevity in C. elegans. Expression of the UPRER transcription factor, XBP-1s, in these glia increases stress resistance, and longevity, and activates the UPRER in intestinal cells via neuropeptides. Autophagy, a key regulator of metabolism and aging, has been described as a cell autonomous process. Surprisingly, we find that glial XBP-1s enhances proteostasis and longevity by cell non-autonomously reprogramming organismal lipid metabolism and activating autophagy. Glial XBP-1s regulates the activation of another transcription factor, HLH-30/TFEB, in the intestine. HLH-30 activates intestinal autophagy, increases intestinal lipid catabolism, and upregulates a robust transcriptional program. Our study reveals a novel role for glia in regulating peripheral lipid metabolism, autophagy, and organellar health through peripheral activation of HLH-30 and autophagy.

2.
Cell Rep ; 33(10): 108489, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296657

RESUMEN

In multicellular organisms, neurons integrate a diverse array of external cues to affect downstream changes in organismal health. Specifically, activation of the endoplasmic reticulum (ER) unfolded protein response (UPRER) in neurons increases lifespan by preventing age-onset loss of ER proteostasis and driving lipid depletion in a cell non-autonomous manner. The mechanism of this communication is dependent on the release of small clear vesicles from neurons. We find dopaminergic neurons are necessary and sufficient for activation of cell non-autonomous UPRER to drive lipid depletion in peripheral tissues, whereas serotonergic neurons are sufficient to drive protein homeostasis in peripheral tissues. These signaling modalities are unique and independent and together coordinate the beneficial effects of neuronal cell non-autonomous ER stress signaling upon health and longevity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neuronas Serotoninérgicas/metabolismo , Respuesta de Proteína Desplegada/fisiología , Envejecimiento , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/fisiología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Metabolismo de los Lípidos/fisiología , Longevidad , Neuronas/metabolismo , Proteostasis/fisiología , Neuronas Serotoninérgicas/fisiología , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/genética
3.
Sci Adv ; 6(26): eaaz9805, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637599

RESUMEN

Recent work has highlighted the fact that lysosomes are a critical signaling hub of metabolic processes, providing fundamental building blocks crucial for anabolic functions. How lysosomal functions affect other cellular compartments is not fully understood. Here, we find that lysosomal recycling of the amino acids lysine and arginine is essential for proper ER quality control through the UPRER. Specifically, loss of the lysine and arginine amino acid transporter LAAT-1 results in increased sensitivity to proteotoxic stress in the ER and decreased animal physiology. We find that these LAAT-1-dependent effects are linked to glycine metabolism and transport and that the loss of function of the glycine transporter SKAT-1 also increases sensitivity to ER stress. Direct lysine and arginine supplementation, or glycine supplementation alone, can ameliorate increased ER stress sensitivity found in laat-1 mutants. These data implicate a crucial role in recycling lysine, arginine, and glycine in communication between the lysosome and ER.

4.
Science ; 367(6476): 436-440, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31974253

RESUMEN

The ability of the nervous system to sense cellular stress and coordinate protein homeostasis is essential for organismal health. Unfortunately, stress responses that mitigate disturbances in proteostasis, such as the unfolded protein response of the endoplasmic reticulum (UPRER), become defunct with age. In this work, we expressed the constitutively active UPRER transcription factor, XBP-1s, in a subset of astrocyte-like glia, which extended the life span in Caenorhabditis elegans Glial XBP-1s initiated a robust cell nonautonomous activation of the UPRER in distal cells and rendered animals more resistant to protein aggregation and chronic ER stress. Mutants deficient in neuropeptide processing and secretion suppressed glial cell nonautonomous induction of the UPRER and life-span extension. Thus, astrocyte-like glial cells play a role in regulating organismal ER stress resistance and longevity.


Asunto(s)
Caenorhabditis elegans/fisiología , Estrés del Retículo Endoplásmico/fisiología , Longevidad , Neuroglía/fisiología , Neuropéptidos/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Mutación , Agregado de Proteínas/fisiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/fisiología
5.
Sci Adv ; 6(1): eaaz1441, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911951

RESUMEN

Longevity is dictated by a combination of environmental and genetic factors. One of the key mechanisms to regulate life-span extension is the induction of protein chaperones for protein homeostasis. Ectopic activation of the unfolded protein response of the endoplasmic reticulum (UPRER) specifically in neurons is sufficient to enhance organismal stress resistance and extend life span. Here, we find that this activation not only promotes chaperones but also facilitates ER restructuring and ER function. This restructuring is concomitant with lipid depletion through lipophagy. Activation of lipophagy is distinct from chaperone induction and is required for the life-span extension found in this paradigm. Last, we find that overexpression of the lipophagy component, ehbp-1, is sufficient to deplete lipids, remodel ER, and promote life span. Therefore, UPR induction in neurons triggers two distinct programs in the periphery: the proteostasis arm through protein chaperones and metabolic changes through lipid depletion mediated by EH domain binding protein 1 (EHBP-1).


Asunto(s)
Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Longevidad/genética , Respuesta de Proteína Desplegada/genética , Proteínas de Transporte Vesicular/genética , Animales , Caenorhabditis elegans , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Humanos , Lípidos/genética , Chaperonas Moleculares/genética , Neuronas/metabolismo , Transducción de Señal/genética
6.
Mol Biol Cell ; 29(21): 2522-2527, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30133343

RESUMEN

There are many studies suggesting an age-associated decline in the actin cytoskeleton, and this has been adopted as common knowledge in the field of aging biology. However, a direct identification of this phenomenon in aging multicellular organisms has not been performed. Here, we express LifeAct::mRuby in a tissue-specific manner to interrogate cytoskeletal organization as a function of age. We show for the first time in Caenorhabditis elegans that the organization and morphology of the actin cytoskeleton deteriorate at advanced age in the muscles, intestine, and hypodermis. Moreover, hsf-1 is essential for regulating cytoskeletal integrity during aging, so that knockdown of hsf-1 results in premature aging of actin and its overexpression protects actin cytoskeletal integrity in the muscles, the intestine, and the hypodermis. Finally, hsf-1 overexpression in neurons alone is sufficient to protect cytoskeletal integrity in nonneuronal cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , Actinas/metabolismo , Animales , Homeostasis , Longevidad , Neuronas/metabolismo , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA