Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(28): 10331-10338, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37387509

RESUMEN

Blooms of the cyanobacterium Microcystis threaten aquatic ecosystems. Protozoa grazing can control unicellular Microcystis populations; however, Microcystis blooms are composed of multicellular colonies that are thought to prevent grazing. We show that this is not so: the model ciliate Paramecium has an impact on Microcystis populations through grazing, even when large colonies occur, and this leads to a corresponding decrease in toxic microcystins. Notably, as the number of large colonies increased, Paramecium exerted top-down control by altering its feeding behavior: once the colony size was >12-20 µm, Paramecium no longer acted as a "filter feeder"; instead, it became a "surface browser," grazing around and between larger colonies, removing individual Microcystis and small colonies. However, as the proportion of large colonies increased, exponentially reducing the surface area to volume ratio, the impact of Paramecium decreased exponentially. This study provides new insights into how protozoa may affect Microcystis populations through top-down control of blooms.


Asunto(s)
Cianobacterias , Microcystis , Ecosistema , Microcistinas
2.
Am Nat ; 201(4): 610-618, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958001

RESUMEN

AbstractConventional analyses suggest that the metabolism of heterotrophs is thermally more sensitive than that of autotrophs, implying that warming leads to pronounced trophodynamic imbalances. However, these analyses inappropriately combine within- and across-taxa trends. Our new analysis separates these, revealing that 92% of the difference in the apparent thermal sensitivity between autotrophic and heterotrophic protists does indeed arise from within-taxa responses. Fitness differences among taxa adapted to different temperature regimes only partially compensate for the positive biochemical relationship between temperature and growth rate within taxa, supporting the hotter-is-partially-better hypothesis. Our work highlights the importance of separating within- and across-taxa responses when comparing temperature sensitivities between groups, which is relevant to how trophic imbalances and carbon fluxes respond to warming.


Asunto(s)
Calor , Temperatura , Procesos Autotróficos
3.
Mar Life Sci Technol ; 4(1): 1-9, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37073362

RESUMEN

To succeed, a scientist must write well. Substantial guidance exists on writing papers that follow the classic Introduction, Methods, Results, and Discussion (IMRaD) structure. Here, we fill a critical gap in this pedagogical canon. We offer guidance on developing a good scientific story. This valuable-yet often poorly achieved-skill can increase the impact of a study and its likelihood of acceptance. A scientific story goes beyond presenting information. It is a cohesive narrative that engages the reader by presenting and solving a problem, with a beginning, middle, and end. To create this narrative structure, we urge writers to consider starting at the end of their study, starting with writing their main conclusions, which provide the basis of the Discussion, and then work backwards: Results → Methods → refine the Discussion → Introduction → Abstract → Title. In this brief and informal editorial, we offer guidance to a wide audience, ranging from upper-level undergraduates (who have just conducted their first research project) to senior scientists (who may benefit from re-thinking their approach to writing). To do so, we provide specific instruction, examples, and a guide to the literature on how to "write backwards", linking scientific storytelling to the IMRaD structure.

4.
J Eukaryot Microbiol ; 69(5): e12879, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34877743

RESUMEN

Plankton ecologists ultimately focus on forecasting, both applied and environmental outcomes. We review how appreciating planktonic ciliates has become central to these predictions. We explore the 350-year-old canon on planktonic ciliates and examine its steady progression, which has been punctuated by conceptual insights and technological breakthroughs. By reflecting on this process, we offer suggestions as to where future leaps are needed, with an emphasis on predicting outcomes of global warming. We conclude that in terms of climate change research: (i) climatic hotspots (e.g. polar oceans) require attention; (ii) simply adding ciliate measurements to zooplankton/phytoplankton-based sampling programs is inappropriate; (iii) elucidating the rare biosphere's functional ecology requires culture-independent genetic methods; (iv) evaluating genetic adaptation (microevolution) and population composition shifts is required; (v) contrasting marine and freshwaters needs attention; (vi) mixotrophy needs attention; (vii) laboratory and field studies must couple automated measurements and molecular assessment of functional gene expression; (viii) ciliate trophic diversity requires appreciation; and (ix) marrying gene expression and function, coupled with climate change scenarios is needed. In short, continued academic efforts and financial support are essential to achieve the above; these will lead to understanding how ciliates will respond to climate change, providing tools for forecasting.


Asunto(s)
Cilióforos , Plancton , Animales , Cilióforos/genética , Ecología , Ecosistema , Océanos y Mares , Fitoplancton , Plancton/genética , Zooplancton
5.
Front Microbiol ; 11: 592286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552011

RESUMEN

Free-living eukaryotic microbes may reduce animal diseases. We evaluated the dynamics by which micrograzers (primarily protozoa) apply top-down control on the chytrid Batrachochytrium dendrobatidis (Bd) a devastating, panzootic pathogen of amphibians. Although micrograzers consumed zoospores (∼3 µm), the dispersal stage of chytrids, not all species grew monoxenically on zoospores. However, the ubiquitous ciliate Tetrahymena pyriformis, which likely co-occurs with Bd, grew at near its maximum rate (r = 1.7 d-1). A functional response (ingestion vs. prey abundance) for T. pyriformis, measured using spore-surrogates (microspheres) revealed maximum ingestion (I max ) of 1.63 × 103 zoospores d-1, with a half saturation constant (k) of 5.75 × 103 zoospores ml-1. Using these growth and grazing data we developed and assessed a population model that incorporated chytrid-host and micrograzer dynamics. Simulations using our data and realistic parameters obtained from the literature suggested that micrograzers could control Bd and potentially prevent chytridiomycosis (defined as 104 sporangia host-1). However, simulated inferior micrograzers (0.7 × I max and 1.5 × k) did not prevent chytridiomycosis, although they ultimately reduced pathogen abundance to below levels resulting in disease. These findings indicate how micrograzer responses can be applied when modeling disease dynamics for Bd and other zoosporic fungi.

6.
Am Nat ; 194(5): 654-670, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31613665

RESUMEN

We argue that predator-prey dynamics, a cornerstone of ecology, can be driven by insufficiently explored aspects of predator performance that are inherently prey dependent: that is, these have been falsely excluded. Classical (Lotka-Volterra-based) models tend to consider only prey-dependent ingestion rate. We highlight three other prey-dependent responses and provide empirically derived functions to describe them. These functions introduce neglected nonlinearities and threshold behaviors into dynamic models, leading to unexpected outcomes: specifically, as prey abundance increases predators (1) become less efficient at using prey; (2) initially allocate resources toward survival and then allocate resources toward reproduction; and (3) are less likely to die. Based on experiments using model zooplankton, we explore the consequences of including these functions in the classical structure and show that they alter qualitative and quantitative dynamics of an empirically informed generic predator-prey model. Through bifurcation analysis, our revised structure predicts (1) predator extinctions, where the classical structure allows persistence; (2) predator survival, where the classical structure drives predators toward extinction; and (3) greater stability through smaller amplitude of cycles, relative to the classical structure. Then, by exploring parameter space, we show how these responses alter predictions of predator-prey stability and competition between predators. In light of our results, we suggest that classical assumptions about predator responses to prey abundance should be reevaluated.


Asunto(s)
Conducta Predatoria/fisiología , Zooplancton/fisiología , Animales , Conducta Alimentaria , Cadena Alimentaria , Modelos Biológicos , Dinámica Poblacional , Reproducción/fisiología , Asignación de Recursos
7.
J Eukaryot Microbiol ; 64(4): 539-554, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28061024

RESUMEN

Recent advances in molecular technology have revolutionized research on all aspects of the biology of organisms, including ciliates, and created unprecedented opportunities for pursuing a more integrative approach to investigations of biodiversity. However, this goal is complicated by large gaps and inconsistencies that still exist in the foundation of basic information about biodiversity of ciliates. The present paper reviews issues relating to the taxonomy of ciliates and presents specific recommendations for best practice in the observation and documentation of their biodiversity. This effort stems from a workshop that explored ways to implement six Grand Challenges proposed by the International Research Coordination Network for Biodiversity of Ciliates (IRCN-BC). As part of its commitment to strengthening the knowledge base that supports research on biodiversity of ciliates, the IRCN-BC proposes to populate The Ciliate Guide, an online database, with biodiversity-related data and metadata to create a resource that will facilitate accurate taxonomic identifications and promote sharing of data.


Asunto(s)
Cilióforos/clasificación , Bases de Datos Factuales , Biodiversidad , Cilióforos/genética , Internet , Filogenia
8.
J Eukaryot Microbiol ; 63(5): 552-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27593699

RESUMEN

We planned to develop predator-prey models using Paramecium and yeast, but they have not been empirically examined since work by Gause in the 1930s. Therefore, we evaluated if Paramecium aurelia ingests and grows on eight yeasts. Recognising that it ingested yeasts but could not grow, we assessed if it might grow on other yeasts, by empirically parameterising a predator-prey model that relies on ingestion, not growth. Simulations were compared to P. aurelia-yeast time-series data, from Gause. We hypothesised that if the model simulated predator-prey dynamics that mimicked the original data, then possibly P. aurelia could grow on yeast; simulations did not mimic the original data. Reviewing works by Gause exposed two issues: experiments were undoubtedly contaminated with bacteria, allowing growth on bacteria, not yeast; and the population cycle data cannot be considered a self-sustaining time series, as they were manipulated by adding yeast and ciliates. We conclude that past and future work should not rely on this system, for either empirical or theoretical evaluations. Finally, although we show that P. aurelia, P. caudatum, Euplotes patella, and Blepharisma sp. cannot grow on yeast, Tetrahymena pyriformis and Colpidium striatum can; these may provide models to explore predator-prey dynamics.


Asunto(s)
Paramecium/fisiología , Paramecium/patogenicidad , Conducta Predatoria/fisiología , Levaduras , Animales , Bacterias , Cilióforos/crecimiento & desarrollo , Cilióforos/patogenicidad , Cilióforos/fisiología , Euplotes/crecimiento & desarrollo , Euplotes/patogenicidad , Modelos Biológicos , Modelos Teóricos , Mortalidad , Paramecium/crecimiento & desarrollo , Dinámica Poblacional , Tetrahymena pyriformis , Tetrahymenina
9.
Eur J Protistol ; 55(Pt A): 50-74, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27094869

RESUMEN

Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator-prey dynamics ranging from Lotka-Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations. We briefly consider intraspecific variability of some key parameters and constraints inherent in laboratory microcosm experiments. We then upscale the significance of phagotrophic protists in food webs to the ocean level. Finally, we discuss limitations of the mechanistic understanding of protist functional ecology resulting from principal unpredictability of nonlinear dynamics. We conclude by defining open questions and identifying perspectives for future research on functional ecology of aquatic phagotrophic protists.


Asunto(s)
Organismos Acuáticos/fisiología , Eucariontes/fisiología , Hidrobiología , Evolución Biológica , Modelos Biológicos , Investigación/normas , Investigación/tendencias
10.
ISME J ; 10(7): 1767-78, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26684731

RESUMEN

Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer's ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer-prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment.


Asunto(s)
Microcystis/fisiología , Ochromonas/microbiología , Procesos Autotróficos , Ecosistema , Procesos Heterotróficos , Modelos Biológicos , Ochromonas/fisiología , Dinámica Poblacional , Temperatura
11.
Protist ; 166(2): 211-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25819465

RESUMEN

Incorporating protozoa into population models (from simple predator-prey explorations to complex food web simulations) is of conceptual, ecological, and economic importance. From theoretical and empirical perspectives, we expose unappreciated complexity in the traditional predator-prey model structure and provide a parsimonious solution, especially for protistologists. We focus on how prey abundance alters two key components of models: predator conversion efficiency (e, the proportion of prey converted to predator, before mortality loss) and predator mortality (δ, the portion of the population lost though death). Using a well-established model system (Paramecium and Didinium), we collect data to parameterize a range of existing and novel population models that differ in the functional forms of e and δ. We then compare model simulations to an empirically obtained time-series of predator-prey population dynamics. The analysis indicates that prey-dependent e and δ should be considered when structuring population models and that both prey and predator biomass also vary with prey abundance. Both of these impact the ability of the model to predict population dynamics and, therefore, should be included in theoretical model evaluations and assessment of ecosystem dynamics associated with biomass flux.


Asunto(s)
Cilióforos/fisiología , Ecosistema , Cadena Alimentaria , Modelos Biológicos , Biomasa , Simulación por Computador , Paramecium/fisiología , Dinámica Poblacional
12.
Proc Biol Sci ; 280(1768): 20131389, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23926152

RESUMEN

We propose that delayed predator-prey models may provide superficially acceptable predictions for spurious reasons. Through experimentation and modelling, we offer a new approach: using a model experimental predator-prey system (the ciliates Didinium and Paramecium), we determine the influence of past-prey abundance at a fixed delay (approx. one generation) on both functional and numerical responses (i.e. the influence of present : past-prey abundance on ingestion and growth, respectively). We reveal a nonlinear influence of past-prey abundance on both responses, with the two responding differently. Including these responses in a model indicated that delay in the numerical response drives population oscillations, supporting the accepted (but untested) notion that reproduction, not feeding, is highly dependent on the past. We next indicate how delays impact short- and long-term population dynamics. Critically, we show that although superficially the standard (parsimonious) approach to modelling can reasonably fit independently obtained time-series data, it does so by relying on biologically unrealistic parameter values. By contrast, including our fully parametrized delayed density dependence provides a better fit, offering insights into underlying mechanisms. We therefore present a new approach to explore time-series data and a revised framework for further theoretical studies.


Asunto(s)
Cilióforos/fisiología , Modelos Biológicos , Paramecium/fisiología , Animales , Densidad de Población , Dinámica Poblacional , Conducta Predatoria
13.
ISME J ; 7(2): 405-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23151643

RESUMEN

We use strains recently collected from the field to establish cultures; then, through laboratory studies we investigate how among strain variation in protozoan ingestion and growth rates influences population dynamics and intraspecific competition. We focused on the impact of changing temperature because of its well-established effects on protozoan rates and its ecological relevance, from daily fluctuations to climate change. We show, first, that there is considerable inter-strain variability in thermal sensitivity of maximum growth rate, revealing distinct differences among multiple strains of our model species Oxyrrhis marina. We then intensively examined two representative strains that exhibit distinctly different thermal responses and parameterised the influence of temperature on their functional and numerical responses. Finally, we assessed how these responses alter predator-prey population dynamics. We do this first considering a standard approach, which assumes that functional and numerical responses are directly coupled, and then compare these results with a novel framework that incorporates both functional and numerical responses in a fully parameterised model. We conclude that: (i) including functional diversity of protozoa at the sub-species level will alter model predictions and (ii) including directly measured, independent functional and numerical responses in a model can provide a more realistic account of predator-prey dynamics.


Asunto(s)
Alveolados/crecimiento & desarrollo , Chlorophyta/crecimiento & desarrollo , Modelos Teóricos , Temperatura , Alveolados/fisiología , Chlorophyta/fisiología , Agua de Mar/microbiología , Especificidad de la Especie , Microbiología del Agua
14.
Proc Natl Acad Sci U S A ; 109(51): 20998-1003, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213247

RESUMEN

The mechanisms that underpin the varied spatial genetic structures exhibited by free-living marine microorganisms remain controversial, with most studies emphasizing a high dispersal capability that should redistribute genetic diversity in contrast to most macroorganisms whose populations often retain a genetic signature of demographic response to historic climate fluctuations. We quantified the European phylogeographic structure of the marine flagellate Oxyrrhis marina and found a marked difference in spatial genetic structure, population demography, and genetic diversity between the northwest Atlantic and Mediterranean Sea that reflects the persistent separation of these regions as well as context-dependent population responses to contrasting environments. We found similar geographic variation in the level of genetic diversity in the sister species Oxyrrhis maritima. Because the capacity for wide dispersal is not always realized, historic genetic footprints of range expansion and contraction persist in contemporary populations of marine microbes, as they do in larger species. Indeed, the well-described genetic effects of climatic variation on macroorganisms provide clear, testable hypotheses about the processes that drive genetic divergence in marine microbes and thus about the response to future environmental change.


Asunto(s)
Dinoflagelados/genética , Dinoflagelados/fisiología , Animales , Océano Atlántico , Complejo IV de Transporte de Electrones/genética , Monitoreo del Ambiente/métodos , Europa (Continente) , Variación Genética , Genética de Población , Geografía , Haplotipos , Región Mediterránea , Modelos Genéticos , Filogenia , Filogeografía
15.
Ecol Lett ; 15(8): 856-63, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22639876

RESUMEN

The extent to which a landscape is fragmented affects persistence of predator-prey dynamics. Increasing fragmentation concomitantly imposes conditions that stabilise and destabilise metapopulations. For the first time, we explicitly assessed the hypothesis that intermediate levels provide optimal conditions for stability. We examine four structural changes arising from increased fragmentation: increased fragment number; decreased fragment size; increased connectedness (corridors scaled to fragment); increased fragment heterogeneity (based on connectedness). Using the model predator-prey system (Didinium-Paramecium) we support our hypothesis, by examining replicated metapopulations dynamics at five fragmentation levels. Although both species became extinct without fragmentation, prey survived at low and high levels, and both survived at intermediate levels. By examining time to extinction, maximum abundances, and population asynchrony we conclude that fragmentation produces structural heterogeneity (independent of environmental heterogeneity), which influences stability. Our analysis suggests why some theoretical, field and microcosm studies present conflicting views of fragmentation effects on population persistence.


Asunto(s)
Cadena Alimentaria , Modelos Teóricos , Dinámica Poblacional , Cilióforos , Paramecium , Análisis de Supervivencia
16.
J Hazard Mater ; 221-222: 213-9, 2012 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-22560242

RESUMEN

Hazardous materials, such as ammonia and microcystin, are released into lakes during cyanobacterial bloom degradation and may severely impact aquatic organisms. To assess the combined effects of ammonia and microcystin on survival, growth, and oxidative stress of larval fish, 14-day-old larvae of bighead carp Hypophthalmythys nobilis were exposed to solutions with different combined concentrations of ammonia (0, 0.06, 0.264mgL(-1)) and microcystin (0, 2, 10, 30µgL(-1)) for 10 days. Microcystin significantly decreased body length, while ammonia significantly increased body weight, specific growth rate, and condition factor, but there was no significant interaction between ammonia and microcystin on them. Superoxide dismutase, catalase, and malondialdehyde significantly changed with microcystin concentration, whereas glutathione was not affected by microcystin. Ammonia significantly affected the antioxidant system. There were significant interactions between ammonia and microcystin on superoxide dismutase and malondialdehyde. Our data clearly demonstrate that ammonia and microcystin adversely affect bighead carp larvae.


Asunto(s)
Amoníaco/farmacología , Antioxidantes/metabolismo , Carpas/crecimiento & desarrollo , Larva/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Microcistinas/farmacología , Animales , Catalasa/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
17.
PLoS One ; 7(3): e32285, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22403641

RESUMEN

The occurrence of Microcystis blooms is a worldwide concern that has caused numerous adverse effects on water quality and lake ecology. Elevated ammonia and microcystin concentrations co-occur during the degradation of Microcystis blooms and are toxic to aquatic organisms; we studied the relative and combined effects of these on the life history of the model organism Daphnia magna. Ammonia and microcystin-LR treatments were: 0, 0.366, 0.581 mg L(-1) and 0, 10, 30, 100 µg L(-1), respectively. Experiments followed a fully factorial design. Incubations were 14 d and recorded the following life-history traits: number of moults, time to first batch of eggs, time to first clutch, size at first batch of eggs, size at first clutch, number of clutches per female, number of offspring per clutch, and total offspring per female. Both ammonia and microcystin were detrimental to most life-history traits. Interactive effects of the toxins occurred for five traits: the time to first batch of eggs appearing in the brood pouch, time to first clutch, size at first clutch, number of clutches, and total offspring per female. The interactive effects of ammonia and microcystin appeared to be synergistic on some parameters (e.g., time to first eggs) and antagonistic on others (e.g., total offspring per female). In conclusion, the released toxins during the degradation of Microcystis blooms would result, according to our data, in substantially negative effect on D. magna.


Asunto(s)
Amoníaco/toxicidad , Daphnia/efectos de los fármacos , Daphnia/fisiología , Microcistinas/toxicidad , Toxinas Biológicas/toxicidad , Envejecimiento/fisiología , Animales , Tamaño Corporal/efectos de los fármacos , Tamaño de la Nidada/efectos de los fármacos , Daphnia/crecimiento & desarrollo , Antagonismo de Drogas , Sinergismo Farmacológico , Eutrofización , Femenino , Estadios del Ciclo de Vida/efectos de los fármacos , Muda/efectos de los fármacos , Reproducción/efectos de los fármacos , Reproducción/fisiología
18.
BMC Genomics ; 12: 519, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22014029

RESUMEN

BACKGROUND: The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an environmental factor potentially important in determining O. marina spatial distributions. RESULTS: Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity) revealed 164 transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase) was composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5 different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp) inter-genic regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require careful interpretation. CONCLUSION: Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed gene variants are common and indicate potentially complex genomic arrangements in O. marina. Comparison of the reported data set with existing O. marina and other dinoflagellates ESTs indicates little sequence overlap likely as a result of the relatively limited extent of genome scale sequence data currently available for the dinoflagellates. This is one of the first 454-based transcriptome surveys of an ancestral dinoflagellate taxon and will undoubtedly prove useful for future comparative studies aimed at reconstructing the origin of novel features of the dinoflagellates.


Asunto(s)
Dinoflagelados/genética , Salinidad , Transcriptoma , Secuencia de Aminoácidos , Mapeo Contig , Dinoflagelados/clasificación , Etiquetas de Secuencia Expresada , Genoma , Proteínas HSP90 de Choque Térmico/genética , Péptido Sintasas/genética , Filogenia , Proteínas Protozoarias/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
J Hazard Mater ; 190(1-3): 113-8, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21450401

RESUMEN

Elevated nitrite and microcystin concentrations co-occur during degradation of Microcystis blooms and are toxic to aquatic organisms. We studied the relative and combined effects of these on Daphnia obtusa life-history. Nitrite and microcystin-LR treatments were: 0, 1, 3 mg L(-1) and 0, 10, 100, 300 µg L(-1), respectively. Experiments were factorial with 12 treatment combinations. Incubations were 15 d and recorded: moult number; time to first batch of eggs; time to first clutch; size at first batch of eggs; size at first clutch; number of clutches per female; number of offspring per clutch; total offspring per female. Interactive effects of the toxins occurred for time to first batch of eggs and time to first clutch. The remaining traits were negatively affected by nitrite: a significant decrease occurred in number of offspring per clutch and total number of offspring per mother (both decreased by ∼ 50%); total clutches per mother; number of moults; mother size at first clutch; and first appearance of eggs (primarily at the highest nitrite concentration). We support the literature, recognising nitrite is toxic, and although Microcystis is toxic to zooplankton, the main threat is not from dissolved microcystin but from degradative products such as nitrite.


Asunto(s)
Daphnia/fisiología , Microcistinas/toxicidad , Nitritos/toxicidad , Animales , Carcinógenos , Cladóceros , Tamaño de la Nidada/efectos de los fármacos , Daphnia/efectos de los fármacos , Femenino , Reproducción/efectos de los fármacos
20.
Microb Ecol ; 62(1): 155-61, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21394608

RESUMEN

Protozoa are key components of a wide range of ecosystems, but ecological models that incorporate these microbes often suffer from poor parameterisation, specifically of top-level predator loss rates. We (1) suggest that top-level predator mortality is prey-dependent, (2) provide a novel approach to assess this response, and (3) illustrate the ecological relevance of these findings. Ciliates, Paramecium caudatum (prey) and Didinium nasutum (predator), were used to evaluate predator mortality at varying prey levels. To assess mortality, multiple (>100) predators were individually examined (in 2-ml wells), daily (for 3 days), between 0 and 120 preys ml(-1). Data were used to determine non-linear mortality and growth responses over a range of prey abundances. The responses, plus literature data were then used to parameterise a predator-prey model, based on the Rosenzweig-MacArthur structure. The model assessed the impact of variable and three levels of constant (high, average and low) mortality rates on P. caudatum-D. nasutum population dynamics. Our method to determine variable mortality rate revealed a strong concave decline in mortality with increasing prey abundance. The model indicated: (1) high- and low-constant mortality rates yielded dynamics that deviate substantially from those obtained from a variable rate; (2) average mortality rate superficially produced dynamics similar to the variable rate, but there were differences in the period of predator-prey cycles, and the lowest abundance of prey and predators (by ~2 orders of magnitude). The differences between incorporating variable and constant mortality rate indicate that including a variable rate could substantially improve microbial-based ecological models.


Asunto(s)
Cilióforos/fisiología , Ecosistema , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...