Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492852

RESUMEN

BACKGROUND: Scott syndrome is a mild platelet-type bleeding disorder, first described in 1979, with only 3 unrelated families identified through defective phosphatidylserine (PS) exposure and confirmed by sequencing. The syndrome is distinguished by impaired surface exposure of procoagulant PS on platelets after stimulation. To date, platelet function and thrombin generation in this condition have not been extensively characterized. OBJECTIVES: Genetic and functional studies were undertaken in a consanguineous family with a history of excessive bleeding of unknown cause. METHODS: A targeted gene panel of known bleeding and platelet genes was used to identify possible genetic variants. Platelet phenotyping, flow adhesion, flow cytometry, whole blood and platelet-rich plasma thrombin generation, and specialized extracellular vesicle measurements were performed. RESULTS: We detected a novel homozygous frameshift variant, c.1943del (p.Arg648Hisfs∗23), in ANO6 encoding Anoctamin 6, in a patient with a bleeding history but interestingly with normal ANO6 expression. Phenotyping of the patient's platelets confirmed the absence of PS expression and procoagulant activity but also revealed other defects including reduced platelet δ granules, reduced ristocetin-mediated aggregation and secretion, and reduced P-selectin expression after stimulation. PS was absent on spread platelets, and thrombi formed over collagen at 1500/s. Reduced thrombin generation was observed in platelet-rich plasma and confirmed in whole blood using a new thrombin generation assay. CONCLUSION: We present a comprehensive report of a patient with Scott syndrome with a novel frameshift variant in AN06, which is associated with no platelet PS exposure and markedly reduced thrombin generation in whole blood, explaining the significant bleeding phenotype observed.

2.
Blood ; 143(1): 64-69, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37883794

RESUMEN

ABSTRACT: Platelet factor 4 (PF4) is an abundant chemokine that is released from platelet α-granules on activation. PF4 is central to the pathophysiology of vaccine-induced immune thrombocytopenia and thrombosis (VITT) in which antibodies to PF4 form immune complexes with PF4, which activate platelets and neutrophils through Fc receptors. In this study, we show that PF4 binds and activates the thrombopoietin receptor, cellular myeloproliferative leukemia protein (c-Mpl), on platelets. This leads to the activation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5, leading to platelet aggregation. Inhibition of the c-Mpl-JAK2 pathway inhibits platelet aggregation to PF4, VITT sera, and the combination of PF4 and IgG isolated from VITT patient plasma. The results support a model in which PF4-based immune complexes activate platelets through binding of the Fc domain to FcγRIIA and PF4 to c-Mpl.


Asunto(s)
Janus Quinasa 2 , Trombocitopenia , Humanos , Complejo Antígeno-Anticuerpo/metabolismo , Plaquetas/metabolismo , Heparina/efectos adversos , Factores Inmunológicos/efectos adversos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor Plaquetario 4 , Receptores de Trombopoyetina/metabolismo , Trombocitopenia/inducido químicamente
3.
J Thromb Haemost ; 22(1): 271-285, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37813196

RESUMEN

BACKGROUND: Clustering of the receptors glycoprotein receptor VI (GPVI), C-type lectin-like receptor 2 (CLEC-2), low-affinity immunoglobulin γ Fc region receptor II-a (FcγRIIA), and platelet endothelial aggregation receptor 1 (PEAR1) leads to powerful activation of platelets through phosphorylation of tyrosine in their cytosolic tails and initiation of downstream signaling cascades. GPVI, CLEC-2, and FcγRIIA signal through YxxL motifs that activate Syk. PEAR1 signals through a YxxM motif that activates phosphoinositide 3-kinase. Current ligands for these receptors have an undefined valency and show significant batch variation and, for some, uncertain specificity. OBJECTIVES: We have raised nanobodies against each of these receptors and multimerized them to identify the minimum number of epitopes to achieve robust activation of human platelets. METHODS: Divalent and trivalent nanobodies were generated using a flexible glycine-serine linker. Tetravalent nanobodies utilize a mouse Fc domain (IgG2a, which does not bind to FcγRIIA) to dimerize the divalent nanobody. Ligand affinity measurements were determined by surface plasmon resonance. Platelet aggregation, adenosine triphosphate secretion, and protein phosphorylation were analyzed using standardized methods. RESULTS: Multimerization of the nanobodies led to a stepwise increase in affinity with divalent and higher-order nanobody oligomers having sub-nanomolar affinity. The trivalent nanobodies to GPVI, CLEC-2, and PEAR1 stimulated powerful and robust platelet aggregation, secretion, and protein phosphorylation at low nanomolar concentrations. A tetravalent nanobody was required to activate FcγRIIA with the concentration-response relationship showing a greater variability and reduced sensitivity compared with the other nanobody-based ligands, despite a sub-nanomolar binding affinity. CONCLUSION: The multivalent nanobodies represent a series of standardized, potent agonists for platelet glycoprotein receptors. They have applications as research tools and in clinical assays.


Asunto(s)
Glicoproteínas de Membrana , Anticuerpos de Dominio Único , Humanos , Ratones , Animales , Glicoproteínas de Membrana/metabolismo , Ligandos , Fosfatidilinositol 3-Quinasas/metabolismo , Anticuerpos de Dominio Único/metabolismo , Quinasa Syk , Plaquetas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Agregación Plaquetaria , Lectinas Tipo C/metabolismo , Activación Plaquetaria , Receptores de Superficie Celular/metabolismo
4.
Platelets ; 34(1): 2288213, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38031964

RESUMEN

Platelet-specific collagen receptor glycoprotein (GP)VI is stable on the surface of circulating platelets but undergoes ectodomain cleavage on activated platelets. Activation-dependent GPVI metalloproteolysis is primarily mediated by A Disintegrin And Metalloproteinase (ADAM) 10. Regulation of platelet ADAMs activity is not well-defined however Tissue Inhibitors of Metalloproteinases (TIMPs) may play a role. As levels of TIMPs on platelets and the control of ADAMs-mediated shedding by TIMPs has not been evaluated, we quantified the levels of TIMPs on the surface of resting and activated platelets from healthy donors by flow cytometry and multiplex ELISA. Variable levels of all TIMPs could be detected on platelets. Plasma contained significant quantities of TIMP1 and TIMP2, but only trace amounts of TIMP3 and TIMP4. Recombinant TIMP3 strongly ablated resting and activated platelet ADAM10 activity, when monitored using a quenched fluorogenic peptide substrate with ADAM10 specificity. Whilst ADAM10-specific inhibitor GI254023X or ethylenediamine tetraacetic acid (EDTA) could modulate ligand-initiated shedding of GPVI, only recombinant TIMP2 achieved a modest (~20%) inhibition. We conclude that some platelet TIMPs are able to modulate platelet ADAM10 activity but none strongly regulate ligand-dependent shedding of GPVI. Our findings provide new insights into the regulation of platelet receptor sheddase activity.


What do we know? Platelet receptor GPVI initiates platelet adhesion and aggregation and is proteolytically cleaved from the activated platelet surfaceThe metalloproteinases responsible belong to the ADAMs family of enzymes which are inhibited by TIMPsWhat did we discover? Plasma contains significant amounts of TIMP1 and TIMP2Circulating platelets bear significant amounts of TIMPs 1, 2, and 3Recombinant TIMP3 strongly inhibits resting and activated platelet ADAM10 activityExogenous addition of TIMP2 mildly blocked ligand-initiated shedding of GPVIWhat is the impact? TIMPs may modulate ADAM10 activity under resting conditions and stabilize GPVI levels in response to platelet activationAnti-GPVI agents are being evaluated as anti-thrombotic agents, however, acute loss of GPVI in trauma or settings of thrombocytopenia is linked with clinical bleedingUnderstanding how GPVI levels are regulated is important as agents that modulate GPVI function are emerging as important therapeutics for clinical applications in Thrombosis and Hemostasis fields.


Asunto(s)
Plaquetas , Glicoproteínas de Membrana Plaquetaria , Humanos , Ligandos , Proteína ADAM10/genética , Péptidos/farmacología , Metaloproteasas , Activación Plaquetaria , Proteínas de la Membrana , Secretasas de la Proteína Precursora del Amiloide
5.
Front Cardiovasc Med ; 10: 1225243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745127

RESUMEN

The 2023 annual meeting of the British Society for Haemostasis and Thrombosis (BSHT) was held in Birmingham, United Kingdom. The theme of this year's meeting was novel therapeutics and emerging technology. Here, the exciting research presented at the meeting is discussed.

6.
Arterioscler Thromb Vasc Biol ; 43(9): 1700-1712, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409530

RESUMEN

BACKGROUND: Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS: Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbß3. RESULTS: We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS: Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.


Asunto(s)
Arterias , Plaquetas , Quimiocinas , Activación Neutrófila , Neutrófilos , Trombosis , Plaquetas/inmunología , Plaquetas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Quimiocinas/metabolismo , Trombosis/inmunología , Ligando de CD40 , Neutrófilos/inmunología , Neutrófilos/metabolismo , Adhesión Celular , Humanos
7.
J Thromb Haemost ; 20(11): 2617-2631, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35894121

RESUMEN

BACKGROUND: The collagen receptor glycoprotein VI (GPVI) is an attractive antiplatelet target due to its critical role in thrombosis but minor involvement in hemostasis. OBJECTIVE: To investigate GPVI receptor involvement in platelet activation by collagen-I and atherosclerotic plaque using novel blocking and non-blocking anti-GPVI nanobodies (Nbs). METHODS: Nb effects on GPVI-mediated signaling and function were assessed by western blot and whole blood thrombus formation under flow. GPVI clustering was visualized in thrombi using fluorescently labeled Nb28. RESULTS: Under arterial shear, inhibitory Nb2 blocks thrombus formation and platelet activation on collagen and plaque, but only reduces adhesion on plaque. In contrast, adhesion on collagen, but not plaque, is decreased by blocking integrin α2ß1. Adhesion on plaque is maintained despite inhibition of integrins αvß3, α5ß1, α6ß1, and αIIbß3. Only combined αIIbß3 and α2ß1 blockade inhibits adhesion and thrombus formation to the same extent as Nb2 alone. Nb2 prevents GPVI signaling, with loss of Syk, Lat, and PLCÉ£2 phosphorylation, especially to plaque stimulation. Non-blocking fluorescently labeled Nb28 reveals distinct GPVI distribution patterns on collagen and plaque, with GPVI clustering clearly apparent on collagen fibers and less frequent on plaque. Clustering on collagen fibers is lost in the presence of Nb2. CONCLUSIONS: This work emphasizes the critical difference in GPVI-mediated platelet activation by plaque and collagen; it highlights the importance of GPVI clustering for downstream signaling and thrombus formation. Labeled Nb28 is a novel tool for providing mechanistic insight into this process and the data suggest Nb2 warrants further investigation as a potential anti-thrombotic agent.


Asunto(s)
Placa Aterosclerótica , Anticuerpos de Dominio Único , Trombosis , Humanos , Glicoproteínas de Membrana Plaquetaria/fisiología , Fosfolipasa C gamma , Integrina alfa2beta1 , Anticuerpos de Dominio Único/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Colágeno/farmacología , Análisis por Conglomerados , Plaquetas , Agregación Plaquetaria
8.
Thromb Haemost ; 122(12): 1988-2000, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35817083

RESUMEN

C-type lectin-like receptor 2 (CLEC-2) is highly expressed on platelets and a subpopulation of myeloid cells, and is critical in lymphatic development. CLEC-2 has been shown to support thrombus formation at sites of inflammation, but to have a minor/negligible role in hemostasis. This identifies CLEC-2 as a promising therapeutic target in thromboinflammatory disorders, without hemostatic detriment. We utilized a GPIbα-Cre recombinase mouse for more restricted deletion of platelet-CLEC-2 than the previously used PF4-Cre mouse. clec1bfl/flGPIbα-Cre+ mice are born at a Mendelian ratio, with a mild reduction in platelet count, and present with reduced thrombus size post-FeCl3-induced thrombosis, compared to littermates. Antibody-mediated depletion of platelet count in C57BL/6 mice, to match clec1bfl/flGPIbα-Cre+ mice, revealed that the reduced thrombus size post-FeCl3-injury was due to the loss of CLEC-2, and not mild thrombocytopenia. Similarly, clec1bfl/flGPIbα-Cre+ mouse blood replenished with CLEC-2-deficient platelets ex vivo to match littermates had reduced aggregate formation when perfused over collagen at arterial flow rates. In contrast, platelet-rich thrombi formed following perfusion of human blood under flow conditions over collagen types I or III, atherosclerotic plaque, or inflammatory endothelial cells were unaltered in the presence of CLEC-2-blocking antibody, AYP1, or recombinant CLEC-2-Fc. The reduction in platelet aggregation observed in clec1bfl/flGPIbα-Cre+ mice during arterial thrombosis is mediated by the loss of CLEC-2 on mouse platelets. In contrast, CLEC-2 does not support thrombus generation on collagen, atherosclerotic plaque, or inflamed endothelial cells in human at arterial shear.


Asunto(s)
Placa Aterosclerótica , Trombosis , Ratones , Humanos , Animales , Agregación Plaquetaria , Activación Plaquetaria , Células Endoteliales , Ratones Endogámicos C57BL , Plaquetas , Lectinas Tipo C/genética
9.
Res Pract Thromb Haemost ; 6(3): e12707, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35515079

RESUMEN

Background: Anti-platelet factor 4 (PF4) antibodies that activate platelets via FcγRIIA drive the pathophysiology of vaccine-induced immune thrombocytopenia and thrombosis (VITT). Evolution of these antibodies and their ability to activate platelets after initial treatment remains unknown. Objectives: To assess how clinical and platelet parameters, anti-PF4 antibody levels, and patient serum reactivity changes during follow-up after VITT presentation. Methods: We describe cases of seven discharged VITT patients that were followed from diagnosis up to 280 days (range 199-280) after vaccination. We measured anti-PF4 antibodies and PF4 levels in patient serum during follow-up and tested the ability of patient serum to activate healthy donor platelets and patient platelets over time. Results: Anti-PF4 immunoglobulin G antibody levels are very high at diagnosis (0.9-2.6 OD) and remain relatively high (>1.0 OD) in all patients, except one treated with rituximab, at 7 months post vaccination. All patients were on direct oral anticoagulants throughout follow-up and no patients had recurrent thrombosis. Patients' platelets during follow-up have normal FcγRIIA levels and responsiveness to platelet agonists. Patient diagnostic serum strongly activated control platelets, either alone or with PF4. Most follow-up serum alone was weaker at stimulating donor and patient platelets. However, follow-up serum beyond 150 days still strongly activated platelets with PF4 addition in three patients. Patient serum PF4 levels were lower than controls at diagnosis but returned within normal range by day 50. Conclusions: Explanations for reduced platelet activation during follow-up, despite similar total anti-PF4 antibody levels, remains unclear. Clinical implications of persistent anti-PF4 antibodies in VITT require further study.

10.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008919

RESUMEN

Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s-1). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A2 (TxA2), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.


Asunto(s)
Resistencia al Corte , Quinasa Syk/metabolismo , Trombosis/enzimología , Colágeno/metabolismo , Humanos , Fosforilación , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Anticuerpos de Dominio Único/metabolismo , Quinasa Syk/antagonistas & inhibidores , Temperatura , Trombina/farmacología
12.
Platelets ; 32(8): 1018-1030, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34266346

RESUMEN

Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.


Asunto(s)
Plaquetas/metabolismo , Nanopartículas/metabolismo , Activación Plaquetaria/inmunología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Humanos , Ligandos , Transducción de Señal
13.
Biophys J ; 120(5): 791-804, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33513336

RESUMEN

Microfluidics in vitro assays recapitulate a blood vessel microenvironment using surface-immobilized agonists under biofluidic flows. However, these assays do not quantify intrathrombus mass and activities of adhesive platelets at the agonist margin and use fluorescence labeling, therefore limiting clinical translation potential. Here, we describe a label-free multimodal quantitative imaging flow assay that combines rotating optical coherent scattering microscopy and quantitative phase microscopy. The combined imaging platform enables real-time evaluation of membrane fluctuations of adhesive-only platelets and total intrathrombus mass under physiological flow rates in vitro. We call this multimodal quantitative imaging flow assay coherent optical scattering and phase interferometry (COSI). COSI records intrathrombus mass to picogram accuracy and shape changes to a platelet membrane with high spatial-temporal resolution (0.4 µm/s) under physiological and pathophysiological fluid shear stress (1800 and 7500 s-1). With COSI, we generate an axial slice of 4 µm from the coverslip surface, approximately equivalent to the thickness of a single platelet, which permits nanoscale quantification of membrane fluctuation (activity) of adhesive platelets during initial adhesion, spreading, and recruitment into a developing thrombus (mass). Under fluid shear, pretreatment with a broad range metalloproteinase inhibitor (250 µM GM6001) blocked shedding of platelet adhesion receptors that shown elevated adhesive platelet activity at average of 42.1 µm/s and minimal change in intrathrombus mass.


Asunto(s)
Adhesividad Plaquetaria , Trombosis , Plaquetas , Humanos , Microfluídica , Estrés Mecánico
15.
Blood Adv ; 4(12): 2623-2630, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32556282

RESUMEN

Trauma-induced coagulopathy (TIC) is a complex, multifactorial failure of hemostasis that occurs in 25% of severely injured patients and results in a fourfold higher mortality. However, the role of platelets in this state remains poorly understood. We set out to identify molecular changes that may underpin platelet dysfunction after major injury and to determine how they relate to coagulopathy and outcome. We performed a range of hemostatic and platelet-specific studies in blood samples obtained from critically injured patients within 2 hours of injury and collected prospective data on patient characteristics and clinical outcomes. We observed that, although platelet counts were preserved above critical levels, circulating platelets sampled from trauma patients exhibited a profoundly reduced response to both collagen and the selective glycoprotein VI (GPVI) agonist collagen-related peptide, compared with those from healthy volunteers. These responses correlated closely with overall clot strength and mortality. Surface expression of the collagen receptors GPIbα and GPVI was reduced on circulating platelets in trauma patients, with increased levels of the shed ectodomain fragment of GPVI detectable in plasma. Levels of shed GPVI were highest in patients with more severe injuries and TIC. Collectively, these observations demonstrate that platelets experience a loss of GPVI and GPIbα after severe injury and translate into a reduction in the responsiveness of platelets during active hemorrhage. In turn, they are associated with reduced hemostatic competence and increased mortality. Targeting proteolytic shedding of platelet receptors is a potential therapeutic strategy for maintaining hemostatic competence in bleeding and improving the efficacy of platelet transfusions.


Asunto(s)
Plaquetas , Transfusión de Plaquetas , Hemorragia/etiología , Hemostasis , Humanos , Estudios Prospectivos
16.
J Thromb Haemost ; 18(6): 1447-1458, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198957

RESUMEN

BACKGROUND: Collagen and fibrin engagement and activation of glycoprotein (GP) VI induces proteolytic cleavage of the GPVI ectodomain generating shed soluble GPVI (sGPVI). Collagen-mediated GPVI shedding requires intracellular signalling to release the sGPVI, mediated by A Disintegrin And Metalloproteinase 10 (ADAM10); however, the precise mechanism by which fibrin induces GPVI shedding remains elusive. Plasma sGPVI levels are elevated in patients with coagulopathies, sepsis, or inflammation and can predict onset of sepsis and sepsis-related mortality; therefore, it is clinically important to understand the mechanisms of GPVI shedding under conditions of minimal collagen exposure. OBJECTIVES: Our aim was to characterize mechanisms by which fibrin-GPVI interactions trigger GPVI shedding. METHODS: Platelet aggregometry, sGPVI ELISA, and an ADAM10 fluorescence resonance energy transfer assay were used to measure fibrin-mediated platelet responses. RESULTS: Fibrin induced αIIbß3-independent washed platelet aggregate formation, GPVI shedding, and increased ADAM10 activity, all of which were insensitive to pre-treatment with inhibitors of Src family kinases but were divalent cation- and metalloproteinase-dependent. In contrast, treatment of washed platelets with other GPVI ligands, collagen, and collagen-related peptide caused αIIbß3-dependent platelet aggregation and GPVI release but did not increase constitutive ADAM10 activity. CONCLUSIONS: Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.


Asunto(s)
Fibrina , Glicoproteínas de Membrana Plaquetaria , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Plaquetas , Humanos , Proteínas de la Membrana , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria
17.
Front Immunol ; 11: 78, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082328

RESUMEN

Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 µm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.


Asunto(s)
Plaquetas/citología , Plaquetas/fisiología , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Imagen Óptica/métodos , Animales , Humanos
18.
Haematologica ; 104(8): 1648-1660, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30733265

RESUMEN

Platelets promote wound healing by forming a vascular plug and by secreting growth factors and cytokines. Glycoprotein (GP)VI and C-type lectin-like receptor (CLEC)-2 signal through a (hem)-immunoreceptor tyrosine-based activation motif, which induces platelet activation. GPVI and CLEC-2 support vascular integrity during inflammation in the skin through regulation of leukocyte migration and function, and by sealing sites of vascular damage. In this study, we investigated the role of impaired vascular integrity due to GPVI and/or CLEC-2 deficiency in wound repair using a full-thickness excisional skin wound model in mice. Transgenic mice deficient in both GPVI and CLEC-2 exhibited accelerated skin wound healing, despite a marked impairment in vascular integrity. The local and temporal bleeding in the skin led to greater plasma protein entry, including fibrinogen and clotting factors, was associated with increased fibrin generation, reduction in wound neutrophils and M1 macrophages, decreased level of tumor necrosis factor (TNF)-α, and enhanced angiogenesis at day 3 after injury. Accelerated wound healing was not due to developmental defects in CLEC-2 and GPVI double-deficient mice as similar results were observed in GPVI-deficient mice treated with a podoplanin-blocking antibody. The rate of wound healing was not altered in mice deficient in either GPVI or CLEC-2. Our results show that, contrary to defects in coagulation, bleeding following a loss of vascular integrity caused by platelet CLEC-2 and GPVI deficiency facilitates wound repair by increasing fibrin(ogen) deposition, reducing inflammation, and promoting angiogenesis.


Asunto(s)
Lectinas Tipo C/deficiencia , Glicoproteínas de Membrana/deficiencia , Neovascularización Fisiológica/genética , Glicoproteínas de Membrana Plaquetaria/deficiencia , Cicatrización de Heridas/genética , Animales , Biomarcadores , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Piel/metabolismo , Piel/patología
19.
Blood ; 132(24): 2535-2545, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30348652

RESUMEN

The ability to upregulate and downregulate surface-exposed proteins and receptors is a powerful process that allows a cell to instantly respond to its microenvironment. In particular, mobile cells in the bloodstream must rapidly react to conditions where infection or inflammation are detected, and become proadhesive, phagocytic, and/or procoagulant. Platelets are one such blood cell that must rapidly acquire and manage proadhesive and procoagulant properties in order to execute their primary function in hemostasis. The regulation of platelet membrane properties is achieved via several mechanisms, one of which involves the controlled metalloproteolytic release of adhesion receptors and other proteins from the platelet surface. Proteolysis effectively lowers receptor density and reduces the reactivity of platelets, and is a mechanism to control robust platelet activation. Recent research has also established clear links between levels of platelet receptors and platelet lifespan. In this review, we will discuss the current knowledge of metalloproteolytic receptor regulation in the vasculature with emphasis on the platelet receptor system to highlight how receptor density can influence both platelet function and platelet survival.


Asunto(s)
Plaquetas/metabolismo , Adhesividad Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteolisis , Plaquetas/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...