Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4676, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945236

RESUMEN

Repeated evolution can provide insight into the mechanisms that facilitate adaptation to novel or changing environments. Here we study adaptation to altitude in two tropical butterflies, Heliconius erato and H. melpomene, which have repeatedly and independently adapted to montane habitats on either side of the Andes. We sequenced 518 whole genomes from altitudinal transects and found many regions differentiated between highland (~ 1200 m) and lowland (~ 200 m) populations. We show repeated genetic differentiation across replicate populations within species, including allopatric comparisons. In contrast, there is little molecular parallelism between the two species. By sampling five close relatives, we find that a large proportion of divergent regions identified within species have arisen from standing variation and putative adaptive introgression from high-altitude specialist species. Taken together our study supports a role for both standing genetic variation and gene flow from independently adapted species in promoting parallel local adaptation to the environment.


Asunto(s)
Mariposas Diurnas , Adaptación Fisiológica/genética , Altitud , Animales , Mariposas Diurnas/genética , Fenotipo , Filogenia
2.
Elife ; 102021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34280087

RESUMEN

In Heliconius butterflies, wing colour pattern diversity and scale types are controlled by a few genes of large effect that regulate colour pattern switches between morphs and species across a large mimetic radiation. One of these genes, cortex, has been repeatedly associated with colour pattern evolution in butterflies. Here we carried out CRISPR knockouts in multiple Heliconius species and show that cortex is a major determinant of scale cell identity. Chromatin accessibility profiling and introgression scans identified cis-regulatory regions associated with discrete phenotypic switches. CRISPR perturbation of these regions in black hindwing genotypes recreated a yellow bar, revealing their spatially limited activity. In the H. melpomene/timareta lineage, the candidate CRE from yellow-barred phenotype morphs is interrupted by a transposable element, suggesting that cis-regulatory structural variation underlies these mimetic adaptations. Our work shows that cortex functionally controls scale colour fate and that its cis-regulatory regions control a phenotypic switch in a modular and pattern-specific fashion.


Heliconius butterflies have bright patterns on their wings that tell potential predators that they are toxic. As a result, predators learn to avoid eating them. Over time, unrelated species of butterflies have evolved similar patterns to avoid predation through a process known as Müllerian mimicry. Worldwide, there are over 180,000 species of butterflies and moths, most of which have different wing patterns. How do genes create this pattern diversity? And do butterflies use similar genes to create similar wing patterns? One of the genes involved in creating wing patterns is called cortex. This gene has a large region of DNA around it that does not code for proteins, but instead, controls whether cortex is on or off in different parts of the wing. Changes in this non-coding region can act like switches, turning regions of the wing into different colours and creating complex patterns, but it is unclear how these switches have evolved. Butterfly wings get their colour from tiny structures called scales, which each have their own unique set of pigments. In Heliconius butterflies, there are three types of scales: yellow/white scales, black scales, and red/orange/brown scales. Livraghi et al. used a DNA editing technique called CRISPR to find out whether the cortex gene affects scale type. First, Livraghi et al. confirmed that deleting cortex turned black and red scales yellow. Next, they used the same technique to manipulate the non-coding DNA around the cortex gene to see the effect on the wing pattern. This manipulation turned a black-winged butterfly into a butterfly with a yellow wing band, a pattern that occurs naturally in Heliconius butterflies. The next step was to find the mutation responsible for the appearance of yellow wing bands in nature. It turns out that a bit of extra genetic code, derived from so-called 'jumping genes', had inserted itself into the non-coding DNA around the cortex gene, 'flipping' the switch and leading to the appearance of the yellow scales. Genetic information contains the instructions to generate shape and form in most organisms. These instructions evolve over millions of years, creating everything from bacteria to blue whales. Butterfly wings are visual evidence of evolution, but the way their genes create new patterns isn't specific to butterflies. Understanding wing patterns can help researchers to learn how genetic switches control diversity across other species too.


Asunto(s)
Mariposas Diurnas/genética , Pigmentos Biológicos/genética , Alas de Animales/fisiología , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Color , Fenotipo
3.
Mol Ecol ; 30(23): 6387-6402, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34233044

RESUMEN

Understanding how organisms adapt to their local environment is central to evolution. With new whole-genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common-garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation-associated wing aspect ratio differences are maintained. Genome-wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within-species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.


Asunto(s)
Altitud , Mariposas Diurnas , Alas de Animales , Animales , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/genética , Genómica , Fenotipo , Pigmentación , Alas de Animales/anatomía & histología
4.
PeerJ ; 9: e11523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178447

RESUMEN

Chemical defences against predators underlie the evolution of aposematic coloration and mimicry, which are classic examples of adaptive evolution. Surprisingly little is known about the roles of ecological and evolutionary processes maintaining defence variation, and how they may feedback to shape the evolutionary dynamics of species. Cyanogenic Heliconius butterflies exhibit diverse warning color patterns and mimicry, thus providing a useful framework for investigating these questions. We studied intraspecific variation in de novo biosynthesized cyanogenic toxicity and its potential ecological and evolutionary sources in wild populations of Heliconius erato along environmental gradients, in common-garden broods and with feeding treatments. Our results demonstrate substantial intraspecific variation, including detectable variation among broods reared in a common garden. The latter estimate suggests considerable evolutionary potential in this trait, although predicting the response to selection is likely complicated due to the observed skewed distribution of toxicity values and the signatures of maternal contributions to the inheritance of toxicity. Larval diet contributed little to toxicity variation. Furthermore, toxicity profiles were similar along steep rainfall and altitudinal gradients, providing little evidence for these factors explaining variation in biosynthesized toxicity in natural populations. In contrast, there were striking differences in the chemical profiles of H. erato from geographically distant populations, implying potential local adaptation in the acquisition mechanisms and levels of defensive compounds. The results highlight the extensive variation and potential for adaptive evolution in defense traits for aposematic and mimetic species, which may contribute to the high diversity often found in these systems.

5.
Evolution ; 75(9): 2251-2268, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34019308

RESUMEN

Hybridizing species provide a powerful system to identify the processes that shape genomic variation and maintain species boundaries. However, complex histories of isolation, gene flow, and selection often generate heterogeneous genomic landscapes of divergence that complicate reconstruction of the speciation history. Here, we explore patterns of divergence to reconstruct recent speciation in the erato clade of Heliconius butterflies. We focus on the genomic landscape of divergence across three contact zones of the species H. erato and H. himera. We show that these hybridizing species have an intermediate level of divergence in the erato clade, which fits with their incomplete levels of reproductive isolation. Using demographic modeling and the relationship between admixture and divergence with recombination rate variation, we reconstruct histories of gene flow, selection, and demographic change that explain the observed patterns of genomic divergence. We find that periods of isolation and selection within populations, followed by secondary contact with asymmetrical gene flow are key factors in shaping the heterogeneous genomic landscapes. Collectively, these results highlight the effectiveness of demographic modeling and recombination rate estimates to disentangling the distinct contributions of gene flow and selection to patterns of genomic divergence.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Flujo Génico , Especiación Genética , Genoma , Aislamiento Reproductivo
6.
Ecol Evol ; 10(15): 8197-8209, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32788972

RESUMEN

Rapid evolution can influence the ecology of populations, communities, and ecosystems, but the importance of evolution for ecological dynamics remains unclear, largely because the contexts in which evolution is powerful are poorly resolved. Here, we carry out a large observational study to test hypotheses about context dependency of eco-evolutionary patterns previously identified on the stick insect Timema cristinae. Experiments and observations conducted in 2011 and 2012 documented predator-mediated negative effects of camouflage maladaptation (i.e., evolutionary dynamics) on: (a) T. cristinae abundance and, (b) species richness and abundance of other arthropods. Here we show that camouflage maladaptation does not correlate with T. cristinae abundance and, instead, is associated with increased abundance and species richness of cohabitating arthropods. We furthermore find that plants with high levels of Timema maladaptation tend to have higher foliar nitrogen, that is, higher nutritional value, and more positive mass-abundance slopes in the coexisting arthropod communities. We propose explanations for the observed contrasting results, such as negative density- and frequency-dependent selection, feedbacks between herbivore abundance and plant nutritional quality, and common effects of predation pressure on selection and prey abundance. Our results demonstrate the utility of observational studies to assess the context dependency of eco-evolutionary dynamics patterns and provide testable hypotheses for future work.

7.
Ecol Evol ; 10(9): 3895-3918, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489619

RESUMEN

In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter- and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified "indicator" compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.

8.
J Exp Biol ; 223(Pt 8)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32165433

RESUMEN

Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understorey, especially in the lowlands, where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of 10 Heliconius butterfly species in the wild and found that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets, but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species.


Asunto(s)
Mariposas Diurnas , Microclima , Animales , Calentamiento Global , Calor , Temperatura
9.
Evolution ; 73(12): 2436-2450, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31631338

RESUMEN

Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal-mating clade are smaller than those in the adult-mating clade. Interestingly, we find that high-altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high-altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.


Asunto(s)
Altitud , Evolución Biológica , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/genética , Estadios del Ciclo de Vida , Alas de Animales/anatomía & histología , Animales , Femenino , Masculino , Factores Sexuales , Especificidad de la Especie
10.
Biol Lett ; 10(12): 20140896, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25505057

RESUMEN

Empirical demonstrations of feedbacks between ecology and evolution are rare. Here, we used a field experiment to test the hypothesis that avian predators impose density-dependent selection (DDS) on Timema cristinae stick insects. We transplanted wild-caught T. cristinae to wild bushes at 50 : 50 cryptic : conspicuous morph ratio and manipulated density by transplanting either 24 or 48 individuals. The frequency of the conspicuous morph was reduced by 73% in the low-density treatment, but only by 50% in the high-density treatment, supporting a hypothesis of negative DDS. Coupled with previous studies on T. cristinae, which demonstrate that maladaptive gene flow reduces population density, we support an eco-evolutionary feedback loop in this system. Furthermore, our results support the hypothesis that predator satiation is the mechanism driving DDS. We found no effects of T. cristinae density on the abundance or species richness of other arthropods. Eco-evolutionary feedbacks, driven by processes like DDS, can have implications for adaptive divergence and speciation.


Asunto(s)
Evolución Molecular , Retroalimentación , Ortópteros/genética , Selección Genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...