Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656940

RESUMEN

Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes were evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2KO) male and female mice. In WT males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2KO. Whereas WT females had protection against diabetes induced kidney injury, KTAMPKγ2KO led to loss of female protection against kidney disease. 17ß-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA-seq and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges.

2.
Contemp Clin Trials ; 119: 106845, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809772

RESUMEN

BACKGROUND: The obesity epidemic is a public health concern, as it is associated with a variety of chronic conditions. The ketogenic diet has drawn much scientific and public attention. However, implementation is challenging and its effect on cardio-renal-metabolic health is inconclusive. This study will assess the feasibility, acceptability, and preliminary efficacy of a technology-assisted ketogenic diet on cardio-renal-metabolic health. METHODS: This is a single center, 6-month, stratified, randomized controlled trial. A total of 60 overweight/obese adults (18+ years old) will be enrolled, including 20 without type 2 diabetes (T2D) and without chronic kidney disease (CKD); 20 with T2D, but without CKD; and 20 with early-stage CKD. Participants will be stratified based on health conditions and randomized into a ketogenic diet (n = 30) or a low-fat diet group (n = 30). Health education involving diet and physical activity will be delivered both digitally and in-person. Mobile and connected health technologies will be used to track lifestyle behaviors and health indicators, as well as provide weekly feedback. The primary outcome (weight) and the secondary outcomes (e.g., blood pressure, glycemic control, renal health) will be assessed with traditional measurements and metabolomics. DISCUSSION: Mobile and connected health technologies provide new opportunities to improve chronic condition management, health education attendance, planned lifestyle changes and engagement, and health outcomes. The advancement of bioinformatics technology offers the possibility to profile and analyze omics data which may advance our understanding of the underlying mechanisms of intervention effects on health outcomes at the molecular level for personalized and precision lifestyle interventions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta Cetogénica , Insuficiencia Renal Crónica , Adolescente , Adulto , Dieta con Restricción de Grasas , Humanos , Obesidad , Sobrepeso , Ensayos Clínicos Controlados Aleatorios como Asunto , Tecnología
3.
ACS Nano ; 15(4): 6448-6456, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33760602

RESUMEN

Homochirality is necessary for normal biochemical processes in humans. Abnormal amounts of chiral molecules in biofluids have been found in patients with diabetes. However, the detailed analysis of diabetes-related abnormal chirality in biofluids and its potential use for clinical applications have been hindered by the difficulty in detecting and monitoring the chiral changes in biofluids, due to their low molar mass and trace concentrations. Herein, we demonstrate the label-free detection of chiral molecules using only 10 µL with 107-fold enhancement in sensitivity compared with traditional plasmonic chiral metamaterials. The ultrahigh sensitivity and low sample consumption were enabled by microbubble-induced rapid accumulation of biomolecules on plasmonic chiral sensors. We have applied our technique on mouse and human urine samples, uncovering the previously undetectable diabetes-induced abnormal dextrorotatory shift in chirality of urine metabolites. Furthermore, the accumulation-assisted plasmonic chiral sensing achieved a diagnostic accuracy of 84% on clinical urine samples from human patients. With the ultrahigh sensitivity, ultralow sample consumption, and fast response, our technique will benefit diabetes research and could be developed as point-of-care devices for first-line noninvasive screening and prognosis of prediabetes or diabetes and its complications.


Asunto(s)
Diabetes Mellitus , Animales , Diabetes Mellitus/diagnóstico , Humanos , Ratones , Estereoisomerismo
4.
Cancer Res ; 65(7): 2730-7, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15805272

RESUMEN

Cancer cells require mechanisms to maintain telomeres. Most use telomerase, but 5% to 20% of tumors use alternative lengthening of telomeres (ALT), a telomerase-independent mechanism that seems to depend on recombination. ALT is characterized by amplification of telomere TTAGGG repeats to lengths beyond 50 kb, by elevated rates of telomere recombination, and by nuclear structures called ALT-associated promyelocytic leukemia bodies. In Saccharomyces cerevisiae, survivors of telomerase inactivation also use recombination to maintain telomeres. There are two types of survivors, which differ in telomere structure. The first possesses telomere repeats and the Y' subtelomeric element amplified together as a tandem array at chromosome termini (type I), and the other possesses amplification of telomeric repeats alone (type II), similar to previously described human ALT cells. Here, we describe the first human ALT cell line having "tandem array" telomeres with a structure similar to that of type I yeast survivors. The chromosome termini consist of a repeat unit containing approximately 2.5 kb of SV40 DNA and a variable amount of TTAGGG sequence repeated in tandem an average of 10 to 20 times. Similar to previously described ALT cells, they show evidence of telomere recombination, but unlike standard ALT cells, they lack ALT-associated promyelocytic leukemia bodies and their telomeres are transcribed. These findings have implications for the pathogenesis and diagnosis of cancer.


Asunto(s)
Virus 40 de los Simios/genética , Telómero/genética , Secuencia de Bases , Línea Celular , ADN/genética , ADN/metabolismo , Fibroblastos/citología , Células HeLa , Humanos , Leucemia Promielocítica Aguda/genética , Datos de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos , Telómero/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...