Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293033

RESUMEN

Babesiosis, caused by protozoan parasites of the genus Babesia , is an emerging tick-borne disease of significance for both human and animal health. Babesia parasites infect erythrocytes of vertebrate hosts where they develop and multiply rapidly to cause the pathological symptoms associated with the disease. The identification of various Babesia species underscores the ongoing risk of new zoonotic pathogens capable of infecting humans, a concern amplified by anthropogenic activities and environmental shifts impacting the distribution and transmission dynamics of parasites, their vectors, and reservoir hosts. One such species, Babesia MO1, previously implicated in severe cases of human babesiosis in the midwestern United States, was initially considered closely related to B. divergens , the predominant agent of human babesiosis in Europe. Yet, uncertainties persist regarding whether these pathogens represent distinct variants of the same species or are entirely separate species. We show that although both B. MO1 and B. divergens share similar genome sizes, comprising three nuclear chromosomes, one linear mitochondrial chromosome, and one circular apicoplast chromosome, major differences exist in terms of genomic sequence divergence, gene functions, transcription profiles, replication rates and susceptibility to antiparasitic drugs. Furthermore, both pathogens have evolved distinct classes of multigene families, crucial for their pathogenicity and adaptation to specific mammalian hosts. Leveraging genomic information for B. MO1, B. divergens , and other members of the Babesiidae family within Apicomplexa provides valuable insights into the evolution, diversity, and virulence of these parasites. This knowledge serves as a critical tool in preemptively addressing the emergence and rapid transmission of more virulent strains.

2.
Parasit Vectors ; 16(1): 195, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296439

RESUMEN

BACKGROUND: Babesiosis is a globally growing tick-borne disease in humans. Severe babesiosis caused by Babesia divergens has been reported in two patients from Asturias (Northwestern Spain), suggesting an undetected risk for the disease. To analyze this risk, we retrospectively evaluated the seroprevalence of babesiosis in the Asturian population from 2015 through 2017, a period covering the intermediate years in which these two severe cases occurred. METHODS: Indirect fluorescent assay (IFA) and Western blot (WB) were performed to detect B. divergens IgG antibodies in 120 serum samples from Asturian patients infected with the tick-transmitted spirochete Borrelia burgdorferi sensu lato, a condition that indicates exposure to tick bites. RESULTS: This retrospective study confirmed a B. divergens seroprevalence rate of 39.2% according to IFA results. B. divergens incidence was 7.14 cases/100,000 population, exceeding previously reported seroprevalence rates. No differences in epidemiology and risk factors were found between patients infected solely with B. burgdorferi s.l. and those infected with B. burgdorferi s.l. and with IgG antibodies against B. divergens. This last group of patients lived in Central Asturias, had a milder clinical course and, according to WB results, developed different humoral responses against B. divergens. CONCLUSIONS: Babesia divergens parasites have circulated for several years in Asturias. Epidemiological evidence of babesiosis makes Asturias an emerging risk area for this zoonosis. Human babesiosis could also be relevant in other Spanish and European regions affected by borreliosis. Hence, the potential risk of babesiosis on human health in Asturias and other European forest regions needs to be addressed by the health authorities.


Asunto(s)
Babesia , Babesiosis , Animales , Humanos , Babesiosis/diagnóstico , Babesiosis/epidemiología , Babesiosis/parasitología , Estudios Retrospectivos , España/epidemiología , Estudios Seroepidemiológicos , Inmunoglobulina G
3.
Nat Microbiol ; 8(5): 845-859, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055610

RESUMEN

Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.


Asunto(s)
Babesia , Babesiosis , Garrapatas , Animales , Humanos , Ratones , Babesia/genética , Babesiosis/tratamiento farmacológico , Multiómica , Eritrocitos/parasitología
4.
Pathogens ; 12(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36839594

RESUMEN

One of the Editor's choice articles in 2021 published in Pathogens was a review of human babesiosis in Europe [...].

5.
Pathogens ; 11(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35456074

RESUMEN

Babesia is a genus of intraerythrocytic protozoan parasites belonging to the exclusively parasitic phylum Apicomplexa [...].

6.
Pathogens ; 11(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35215163

RESUMEN

This study, conducted in a nature reserve in southern Portugal, investigated the frequency and diversity of tick-borne piroplasms in six species of adult ixodid ticks removed from 71 fallow deer (Dama dama) and 12 red deer (Cervus elaphus), collected over the period 2012-2019. The majority of 520 ticks were Ixodes ricinus (78.5%), followed by Rhipicephalus sanguineus sensu lato, Hyalomma lusitanicum, Haemaphysalis punctata, Dermacentor marginatus, and Ixodes hexagonus. The R. sanguineus ticks collected from the deer were clearly exophilic, in contrast to the endophilic species usually associated with dogs. Four tick-borne piroplasms, including Theileria spp., and the zoonotic species, Babesia divergens and Babesia microti, were detected. B. divergens 18S rDNA, identical to that of the bovine reference strain U16370 and to certain strains from red deer, was detected in I. ricinus ticks removed from fallow deer. The sporadic detection of infections in ticks removed from the same individual hosts suggests that the piroplasms were present in the ticks rather than the hosts. Theileria sp. OT3 was found in I. ricinus and, along with T. capreoli, was also detected in some of the other tick species. The natural vector and pathogenic significance of this piroplasm are unknown.

7.
Pathogens ; 10(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34578196

RESUMEN

Babesiosis is attracting increasing attention as a worldwide emerging zoonosis. The first case of human babesiosis in Europe was described in the late 1950s and since then more than 60 cases have been reported in Europe. While the disease is relatively rare in Europe, it is significant because the majority of cases present as life-threatening fulminant infections, mainly in immunocompromised patients. Although appearing clinically similar to human babesiosis elsewhere, particularly in the USA, most European forms of the disease are distinct entities, especially concerning epidemiology, human susceptibility to infection and clinical management. This paper describes the history of the disease and reviews all published cases that have occurred in Europe with regard to the identity and genetic characteristics of the etiological agents, pathogenesis, aspects of epidemiology including the eco-epidemiology of the vectors, the clinical courses of infection, diagnostic tools and clinical management and treatment.

8.
Methods Mol Biol ; 2369: 199-215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34313991

RESUMEN

Emerging pathogens have developed ingenious life cycles to facilitate their growth and survival in the host organism. Detailed knowledge of the life cycle of these pathogens is increasingly necessary if we are to design new strategies to prevent infection and transmission. Multi-omics platforms provide useful data at different biological levels, and integration of these data into current approaches can facilitate holistic assessment of emerging pathogens. In this chapter, we bring together various methods and apply an integrative approach for analysis of genomic and transcriptomic data in Babesia divergens, an Apicomplexa emerging parasite that invades red blood cells and causes redwater fever in cattle and the most severe form of babesiosis in humans in Europe. The integrative methodology described herein can be helpful to identify genes active at specific points during life cycle of Apicomplexa parasites.


Asunto(s)
Babesia , Babesiosis , Enfermedades de los Bovinos , Animales , Babesia/genética , Bovinos , Genómica , Estadios del Ciclo de Vida/genética , Transcriptoma
9.
Methods Mol Biol ; 2369: 217-249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34313992

RESUMEN

Upon invasion of red blood cells (RBCs), the Apicomplexa parasite Babesia divergens remains within the RBC for several hours and reproduces asexually, resulting in infective free merozoites that egress and destroy the host cell. Free merozoites rapidly seek and invade new uninfected RBCs. This repetitive cycle allows B. divergens to build a complex population of intraerythrocytic and extracellular stages in the bloodstream of humans and cattle, thus causing babesiosis. To compare biological aspects between B. divergens stages, including the different nature of their metabolism, could be key to our understanding of pathogenesis. Thus, we are currently assessing differences in the B. divergens metabolism of intra- and extracellular (free merozoites) life stages by the use of an integrative approach combining functional genomic, transcriptomic, differential expression, and metabolomic data acquired from sequencing and various analytical platforms. To our knowledge, this is the first effort to describe, in detail, the experimental procedures and integration of different omics to explore the regulation of the metabolism, invasion and proliferation mechanisms of B. divergens. This integrative approach can be used as a reference to study other Apicomplexa parasites.


Asunto(s)
Babesia , Babesiosis , Genómica , Transcriptoma , Animales , Babesia/genética , Bovinos , Enfermedades de los Bovinos , Eritrocitos , Redes y Vías Metabólicas
10.
mSphere ; 5(5)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33055261

RESUMEN

Babesia is an apicomplexan parasite of significance that causes the disease known as babesiosis in domestic and wild animals and in humans worldwide. Babesia infects vertebrate hosts and reproduces asexually by a form of binary fission within erythrocytes/red blood cells (RBCs), yielding a complex pleomorphic population of intraerythrocytic parasites. Seven of them, clearly visible in human RBCs infected with Babesia divergens, are considered the main forms and named single, double, and quadruple trophozoites, paired and double paired pyriforms, tetrad or Maltese Cross, and multiparasite stage. However, these main intraerythrocytic forms coexist with RBCs infected with transient parasite combinations of unclear origin and development. In fact, little is understood about how Babesia builds this complex population during its asexual life cycle. By combining cryo-soft X-ray tomography and video microscopy, main and transitory parasites were characterized in a native whole cellular context and at nanometric resolution. The architecture and kinetics of the parasite population was observed in detail and provide additional data to the previous B. divergens asexual life cycle model that was built on light microscopy. Importantly, the process of multiplication by binary fission, involving budding, was visualized in live parasites for the first time, revealing that fundamental changes in cell shape and continuous rounds of multiplication occur as the parasites go through their asexual multiplication cycle. A four-dimensional asexual life cycle model was built highlighting the origin of several transient morphological forms that, surprisingly, intersperse in a chronological order between one main stage and the next in the cycle.IMPORTANCE Babesiosis is a disease caused by intraerythrocytic Babesia parasites, which possess many clinical features that are similar to those of malaria. This worldwide disease is increasing in frequency and geographical range and has a significant impact on human and animal health. Babesia divergens is one of the species responsible for human and cattle babesiosis causing death unless treated promptly. When B. divergens infects its vertebrate hosts, it reproduces asexually within red blood cells. During its asexual life cycle, B. divergens builds a population of numerous intraerythrocytic (IE) parasites of difficult interpretation. This complex population is largely unexplored, and we have therefore combined three- and four-dimensional imaging techniques to elucidate the origin, architecture, and kinetics of IE parasites. Unveiling the nature of these parasites has provided a vision of the B. divergens asexual cycle in unprecedented detail and is a key step to develop control strategies against babesiosis.


Asunto(s)
Babesia/crecimiento & desarrollo , Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Trofozoítos/crecimiento & desarrollo , Animales , Babesia/patogenicidad , Babesia/ultraestructura , Babesiosis/parasitología , Bovinos , Enfermedades de los Bovinos/parasitología , Eritrocitos/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Microscopía por Video , Reproducción Asexuada , Imagen de Lapso de Tiempo , Tomografía por Rayos X , Trofozoítos/ultraestructura
12.
PLoS Negl Trop Dis ; 13(8): e0007680, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31425518

RESUMEN

Babesiosis is considered an emerging disease because its incidence has significantly increased in the last 30 years, providing evidence of the expanding range of this rare but potentially life-threatening zoonotic disease. Babesia divergens is a causative agent of babesiosis in humans and cattle in Europe. The recently sequenced genome of B. divergens revealed over 3,741 protein coding-genes and the 10.7-Mb high-quality draft become the first reference tool to study the genome structure of B. divergens. Now, by exploiting this sequence data and using new computational tools and assembly strategies, we have significantly improved the quality of the B. divergens genome. The new assembly shows better continuity and has a higher correspondence to B. bovis chromosomes. Moreover, we present a differential expression analysis using RNA sequencing of the two different stages of the asexual lifecycle of B. divergens: the free merozoite capable of invading erythrocytes and the intraerythrocytic parasite stage that remains within the erythrocyte until egress. Comparison of mRNA levels of both stages identified 1,441 differentially expressed genes. From these, around half were upregulated and the other half downregulated in the intraerythrocytic stage. Orthogonal validation by real-time quantitative reverse transcription PCR confirmed the differential expression. A moderately increased expression level of genes, putatively involved in the invasion and egress processes, were revealed in the intraerythrocytic stage compared with the free merozoite. On the basis of these results and in the absence of molecular models of invasion and egress for B. divergens, we have proposed the identified genes as putative molecular players in the invasion and egress processes. Our results contribute to an understanding of key parasitic strategies and pathogenesis and could be a valuable genomic resource to exploit for the design of diagnostic methods, drugs and vaccines to improve the control of babesiosis.


Asunto(s)
Babesia/crecimiento & desarrollo , Babesia/genética , Perfilación de la Expresión Génica , Genoma de Protozoos , Animales , Babesiosis/parasitología , Bovinos , Enfermedades de los Bovinos/parasitología , Biología Computacional , Genómica , Humanos
13.
Sci Rep ; 8(1): 14116, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237573

RESUMEN

Based on confocal fluorescence and bright field video microscopy, we present detailed observations on the processes of invasion and egress of erythrocytes by the apicomplexan parasite Babesia divergens. Time-lapse images reveal numerous unexpected findings associated with the dynamics of B. divergens and its ability to manipulate the erythrocyte during both processes in its asexual cycle under in vitro conditions. Despite the speed at which these processes occur and the small size of the parasite, we capture infective merozoites moving vigorously and causing striking deformations in the erythrocyte's plasma membrane during an active invasion. We also observed intraerythrocytic dynamic stages as paired pyriforms, double paired pyriforms, tetrads, unattached pyriform sister cells and multiple parasite stages resulting in the release of large numbers of merozoites over a short period. Of considerable interest is that time-lapse images reveal a novel mechanism of egress used by B. divergens to exit the human erythrocyte. The release occurs when B. divergens parasites establish contacts with the plasma membrane of the erythrocyte from within, before exiting the cell. Visualization and analysis of the images enabled us to obtain useful information and broaden our knowledge of complex and crucial events involved with parasitisation of human erythrocytes by B. divergens.


Asunto(s)
Babesia/fisiología , Babesiosis/parasitología , Eritrocitos/parasitología , Animales , Bovinos , Enfermedades de los Bovinos/parasitología , Membrana Eritrocítica/parasitología , Imagen de Lapso de Tiempo
16.
Vector Borne Zoonotic Dis ; 16(10): 677-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27560451

RESUMEN

Babesiosis is an emerging zoonosis now found in several areas of the world. Using PCR and indirect immunofluorescence assay, we have diagnosed the first case of human babesiosis caused by Babesia microti in Spain. Diagnosis was delayed because of the nonspecific clinical symptoms that occurred in an immunocompetent patient.


Asunto(s)
Babesia microti , Babesiosis/epidemiología , Babesiosis/microbiología , Adulto , Animales , Antibacterianos/uso terapéutico , Babesiosis/tratamiento farmacológico , Humanos , Masculino , España/epidemiología , Zoonosis
17.
Ticks Tick Borne Dis ; 7(6): 1274-1279, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27430965

RESUMEN

The invasive form of the apicomplexan parasite Babesia divergens, the free merozoite, invades the erythrocytes of host vertebrates, leading to significant pathology. Although invasion is an active process critical for parasite survival, it is not yet entirely understood. Using techniques to isolate the viable free merozoite, as well as electron microscopy, we undertook a detailed morphological study and explored the sub-cellular structure of the invasive B. divergens free merozoite after it had left the host cell. We examined characteristic apicomplexan features such as the apicoplast, the inner and discontinuous double membrane complex, and the apical complex; some aspects of erythrocyte entry by B. divergens were also defined by electron microscopy. This study adds to our understanding of B. divergens free merozoites and their invasion of human erythrocytes.


Asunto(s)
Babesia/ultraestructura , Merozoítos/ultraestructura
18.
Ticks Tick Borne Dis ; 7(3): 498-501, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26874670

RESUMEN

This is the first reported case of Babesia sp. in Antarctic penguins, specifically a population of Chinstrap penguins (Pygoscelis antarctica) in the Vapour Col penguin rookery in Deception Island, South Shetlands, Antarctica. We collected peripheral blood from 50 adult and 30 chick Chinstrap penguins. Examination of the samples by microscopy showed intraerythrocytic forms morphologically similar to other avian Babesia species in 12 Chinstrap penguin adults and seven chicks. The estimated parasitaemias ranged from 0.25×10(-2)% to 0.75×10(-2)%. Despite the low number of parasites found in blood smears, semi-nested PCR assays yielded a 274 bp fragment in 12 of the 19 positive blood samples found by microscopy. Sequencing revealed that the fragment was 97% similar to Babesia sp. 18S rRNA from Australian Little Penguins (Eudyptula minor) confirming presence of the parasite. Parasite prevalence estimated by microscopy in adults and chicks was higher (24% vs. 23.3%, respectively) than found by semi-nested PCR (16% vs. 13.3% respectively). Although sampled penguins were apparently healthy, the effect of Babesia infection in these penguins is unknown. The identification of Babesia sp. in Antarctic penguins is an important finding. Ixodes uriae, as the only tick species present in the Antarctic Peninsula, is the key to understanding the natural history of this parasite. Future work should address the transmission dynamics and pathogenicity of Babesia sp. in Chinstrap penguin as well as in other penguin species, such as Gentoo penguin (Pygoscelis papua) and Adélie penguin (Pygoscelis adeliae), present within the tick distribution range in the Antarctic Peninsula.


Asunto(s)
Babesia/genética , Babesiosis/epidemiología , Enfermedades de las Aves/epidemiología , Filogenia , Spheniscidae/parasitología , Animales , Regiones Antárticas/epidemiología , Babesia/clasificación , Babesia/aislamiento & purificación , Babesiosis/parasitología , Enfermedades de las Aves/parasitología , Eritrocitos/parasitología , Islas , Ixodes/parasitología , Microscopía , Parasitemia , Reacción en Cadena de la Polimerasa , Prevalencia , ARN Ribosómico 18S/genética
19.
Int J Infect Dis ; 33: 202-4, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25686807

RESUMEN

Human babesiosis is a zoonosis primarily transmitted through Ixodes ticks and alternatively by routes such as blood transfusions from asymptomatic donors. We report the first case of human babesiosis caused by Babesia divergens in a patient with HIV. This study also focuses on elucidating the possible transmission route of infection in this patient, who received numerous blood transfusions but showed patent symptoms only after splenectomy. A battery of detection tools along with a novel Western-Blot Assay and Enzyme Linked Immunosorbent Assay using the major surface protein of B. divergens (Bd37) as a target were used to evaluate the presence of B. divergens or antibodies against the parasite in samples from the patient and the blood donors involved in this case. A retrospective study of the humoral status against the parasite revealed B. divergens IgG antibodies in one of the implicated donors, but also showed that the patient had been already exposed to the parasite before any transfusion. Thus, this analysis of natural and transfusion transmission routes suggests a pre-existing subclinical babesiosis in the patient.


Asunto(s)
Babesia/aislamiento & purificación , Babesiosis/diagnóstico , Coinfección/diagnóstico , Infecciones por VIH/complicaciones , Adulto , Babesiosis/etiología , Donantes de Sangre , Transfusión Sanguínea , Humanos , Masculino , Estudios Retrospectivos , Esplenectomía
20.
Genome Announc ; 2(6)2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25395649

RESUMEN

Babesia divergens causes significant morbidity and mortality in cattle and splenectomized or immunocompromised individuals. Here, we present a 10.7-Mb high-quality draft genome of this parasite close to chromosome resolution that will enable comparative genome analyses and synteny studies among related parasites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...