Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Photonics ; 11(6): 2236-2241, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911845

RESUMEN

In this work, we present a photonic integrated platform based on buried InGaAs waveguides with InP cladding that operates over a large mid-infrared (mid-IR) spectral range. Thanks to wet-etch fabrication patterning and Fe doping, low propagation losses below 1.2 dB/cm (0.3 cm-1 loss coefficient) have been obtained between 4.6 and 11.2 µm wavelengths (890-1960 cm-1 wavenumber), in both transverse electric (TE) and transverse magnetic (TM) polarization modes. The possibility of monolithically integrating such waveguides with mid-IR sources offers promising perspectives for developing broadband, homogeneously integrated systems.

2.
Opt Express ; 30(26): 47093-47102, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558646

RESUMEN

Spectroscopy in the mid-infrared (mid-IR) wavelength range is a key technique to detect and identify chemical and biological substances. In this context, the development of integrated optics systems paves the way for the realization of compact and cost-effective sensing systems. Among the required devices, an integrated electro-optical modulator (EOM) is a key element for advanced sensing circuits exploiting dual comb spectroscopy. In this paper, we have experimentally demonstrated an integrated EOM operating in a wide wavelength range, i.e. from 5 to 9 µm at radio frequency (RF) as high as 1 GHz. The modulator exploits the variation of free carrier absorption in a Schottky diode embedded in a graded silicon germanium (SiGe) photonic waveguide.

3.
Opt Lett ; 47(4): 810-813, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167531

RESUMEN

Integrated mid-infrared micro-spectrometers have a great potential for applications in environmental monitoring and space exploration. Silicon-on-insulator (SOI) is a promising platform to tackle this integration challenge, owing to its unique capability for large volume and low-cost production of ultra-compact photonic circuits. However, the use of SOI in the mid-infrared is restricted by the strong absorption of the buried oxide layer for wavelengths beyond 4 µm. Here, we overcome this limitation by utilizing metamaterial-cladded suspended silicon waveguides to implement a spatial heterodyne Fourier-transform (SHFT) spectrometer operating at wavelengths near 5.5 µm. The metamaterial-cladded geometry allows removal of the buried oxide layer, yielding measured propagation loss below 2 dB/cm at wavelengths between 5.3 and 5.7 µm. The SHFT spectrometer comprises 19 Mach-Zehnder interferometers with a maximum arm length imbalance of 200 µm, achieving a measured spectral resolution of 13 cm-1 and a free spectral range of 100 cm-1 at wavelengths near 5.5 µm.

4.
Opt Lett ; 46(6): 1341-1344, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720182

RESUMEN

Silicon photonics on-chip spectrometers are finding important applications in medical diagnostics, pollution monitoring, and astrophysics. Spatial heterodyne Fourier transform spectrometers (SHFTSs) provide a particularly interesting architecture with a powerful passive error correction capability and high spectral resolution. Despite having an intrinsically large optical throughput (étendue, also referred to as Jacquinot's advantage), state-of-the-art silicon SHFTSs have not exploited this advantage yet. Here, we propose and experimentally demonstrate for the first time, to the best of our knowledge, an SHFTS implementing a wide-area light collection system simultaneously feeding an array of 16 interferometers, with an input aperture as large as 90µm×60µm formed by a two-way-fed grating coupler. We experimentally demonstrate 85 pm spectral resolution, 600 pm bandwidth, and 13 dB étendue increase, compared with a device with a conventional grating coupler input. The SHFTS was fabricated using 193 nm deep-UV optical lithography and integrates a large-size input aperture with an interferometer array and monolithic Ge photodetectors, in a 4.5mm2 footprint.

5.
Opt Lett ; 46(3): 617-620, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528423

RESUMEN

Surface grating couplers are fundamental building blocks for coupling the light between optical fibers and integrated photonic devices. However, the operational bandwidth of conventional grating couplers is intrinsically limited by their wavelength-dependent radiation angle. The few dual-band grating couplers that have been experimentally demonstrated exhibit low coupling efficiencies and rely on complex fabrication processes. Here we demonstrate for the first time, to the best of our knowledge, the realization of an efficient dual-band grating coupler fabricated using 193 nm deep-ultraviolet lithography for 10 Gbit symmetric passive optical networks. The footprint of the device is 17×10µm2. We measured coupling efficiencies of -4.9 and -5.2dB with a 3-dB bandwidth of 27 and 56 nm at the wavelengths of 1270 and 1577 nm, corresponding to the upstream and downstream channels, respectively.

6.
ACS Photonics ; 7(12): 3423-3429, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33365361

RESUMEN

Midinfrared spectroscopy is a universal way to identify chemical and biological substances. Indeed, when interacting with a light beam, most molecules are responsible for absorption at specific wavelengths in the mid-IR spectrum, allowing to detect and quantify small traces of substances. On-chip broadband light sources in the mid-infrared are thus of significant interest for compact sensing devices. In that regard, supercontinuum generation offers a mean to efficiently perform coherent light conversion over an ultrawide spectral range, in a single and compact device. This work reports the experimental demonstration of on-chip two-octave supercontinuum generation in the mid-infrared wavelength, ranging from 3 to 13 µm (that is larger than 2500 cm-1) and covering almost the full transparency window of germanium. Such an ultrawide spectrum is achieved thanks to the unique features of Ge-rich graded SiGe waveguides, which allow second-order dispersion tailoring and low propagation losses over a wide wavelength range. The influence of the pump wavelength and power on the supercontinuum spectra has been studied. A good agreement between the numerical simulations and the experimental results is reported. Furthermore, a very high coherence is predicted in the entire spectrum. These results pave the way for wideband, coherent, and compact mid-infrared light sources by using a single device and compatible with large-scale fabrication processes.

7.
Opt Express ; 28(9): 12771-12779, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403767

RESUMEN

The mid-infrared (mid-IR) wavelength range hosts unique vibrational and rotational resonances of a broad variety of substances that can be used to unambiguously detect the molecular composition in a non-intrusive way. Mid-IR photonic-integrated circuits (PICs) are thus expected to have a major impact in many applications. Still, new challenges are posed by the large spectral width required to simultaneously identify many substances using the same photonic circuit. Ge-rich graded SiGe waveguides have been proposed as a broadband platform approach for mid-IR PICs. In this work, ultra-broadband waveguides are experimentally demonstrated within unprecedented wavelength range, efficiently guiding light from 5 to 11 µm. Interestingly, losses from 0.5 to 1.2 dB/cm are obtained between 5.1 and 8 µm wavelength, and values below 3 dB/cm are measured from 9.5 to 11.2 µm wavelength. An increase of propagation losses is seen between 8 and 9.5 µm; however, values stay below 4.6 dB/cm in the entire wavelength range. A detailed analysis of propagation losses is reported, supported by secondary ion mass spectrometry measurement, and different contributions are analyzed: silicon substrate absorption, oxygen impurities, free carrier absorption by residual doping, sidewall roughness and multiphonon absorption. Finally, Mach-Zehnder interferometers are characterized, and wideband operation is experimentally obtained from 5.5 to 10.5 µm wavelength.

8.
Sci Rep ; 9(1): 14633, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601832

RESUMEN

Miniaturized optical spectrometers providing broadband operation and fine resolution have an immense potential for applications in remote sensing, non-invasive medical diagnostics and astronomy. Indeed, optical spectrometers working in the mid-infrared spectral range have garnered a great interest for their singular capability to monitor the main absorption fingerprints of a wide range of chemical and biological substances. Fourier-transform spectrometers (FTS) are a particularly interesting solution for the on-chip integration due to their superior robustness against fabrication imperfections. However, the performance of current on-chip FTS implementations is limited by tradeoffs in bandwidth and resolution. Here, we propose a new FTS approach that gathers the advantages of spatial heterodyning and optical path tuning by thermo-optic effect to overcome this tradeoff. The high resolution is provided by spatial multiplexing among different interferometers with increasing imbalance length, while the broadband operation is enabled by fine tuning of the optical path delay in each interferometer harnessing the thermo-optic effect. Capitalizing on this concept, we experimentally demonstrate a mid-infrared SiGe FTS, with a resolution better than 15 cm-1 and a bandwidth of 603 cm-1 near 7.7 µm wavelength with a 10 MZI array. This is a resolution comparable to state-of-the-art on-chip mid-infrared spectrometers with a 4-fold bandwidth increase with a footprint divided by a factor two.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...