Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 102: 129675, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417632

RESUMEN

NLRP3 is an intracellular sensor protein that detects a broad range of danger signals and environmental insults. Its activation results in a protective pro-inflammatory response designed to impair pathogens and repair tissue damage via the formation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent secretory release of the pro-inflammatory cytokines IL-1ß and IL-18 as well as to gasdermin d-mediated pyroptotic cell death. Herein, we describe the discovery of a novel indazole series of high affinity, reversible inhibitors of NLRP3 activation through screening of DNA-encoded libraries and the potent lead compound 3 (BAL-0028, IC50 = 25 nM) that was identified directly from the screen. SPR studies showed that compound 3 binds tightly (KD range 104-123 nM) to the NACHT domain of NLRP3. A CADD analysis of the interaction of compound 3 with the NLRP3 NACHT domain proposes a binding site that is distinct from those of ADP and MCC950 and includes specific site interactions. We anticipate that compound 3 (BAL-0028) and other members of this novel indazole class of neutral inhibitors will demonstrate significantly different physical, biochemical, and biological properties compared to NLRP3 inhibitors previously identified.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Sulfonamidas , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Caspasa 1 , ADN
2.
EBioMedicine ; 85: 104304, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36265417

RESUMEN

BACKGROUND: MicroRNAs are non-coding RNAs that negatively regulate gene networks. Previously, we reported that systemically delivered miR-29 mimic MRG-201 reduced fibrosis in animal models, supporting the consideration of miR-29-based therapies for idiopathic pulmonary fibrosis (IPF). METHODS: We generated MRG-229, a next-generation miR-29 mimic based on MRG-201 with improved chemical stability due to additional sugar modifications and conjugation with the internalization moiety BiPPB (PDGFbetaR-specific bicyclic peptide)1. We investigated the anti-fibrotic efficacy of MRG-229 on TGF-ß1 treated human lung fibroblasts (NHLFs), human precision cut lung slices (hPCLS), and in vivo bleomycin studies; toxicology was assessed in two animal models, rats, and non-human primates. Finally, we examined miR-29b levels in a cohort of 46 and 213 patients with IPF diagnosis recruited from Yale and Nottingham Universities (Profile Cohort), respectively. FINDINGS: The peptide-conjugated MRG-229 mimic decreased expression of pro-fibrotic genes and reduced collagen production in each model. In bleomycin-treated mice, the peptide-conjugated MRG-229 mimic downregulated profibrotic gene programs at doses more than ten-fold lower than the original compound. In rats and non-human primates, the peptide-conjugated MRG-229 mimic was well tolerated at clinically relevant doses with no adverse findings observed. In human peripheral blood from IPF patients decreased miR-29 concentrations were associated with increased mortality in two cohorts potentially identified as a target population for treatment. INTERPRETATION: Collectively, our results provide support for the development of the peptide-conjugated MRG-229 mimic as a potential therapy in humans with IPF. FUNDING: This work was supported by NIH NHLBI grants UH3HL123886, R01HL127349, R01HL141852, U01HL145567.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , Ratones , Ratas , Animales , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/terapia , Bleomicina , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo
3.
J Biol Chem ; 296: 100694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895132

RESUMEN

Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, ß-myosin heavy chain (ß-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike ß-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of ß-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate ß-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.


Asunto(s)
Miosinas Cardíacas/metabolismo , Miocardio/metabolismo , Cadenas Pesadas de Miosina/metabolismo , ARN Largo no Codificante/genética , Miosinas Cardíacas/química , Humanos , Células Madre Pluripotentes Inducidas , MicroARNs/genética , Simulación de Dinámica Molecular , Miocardio/citología , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/química , Conformación Proteica
5.
Nucleic Acid Ther ; 30(6): 335-345, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32707001

RESUMEN

MicroRNA (miRNA) inhibition is a promising therapeutic strategy in several disease indications. MRG-110 is a locked nucleic acid-based antisense oligonucleotide that targets miR-92a-3p and experimentally was shown to have documented therapeutic effects on cardiovascular disease and wound healing. To gain first insights into the activity of anti-miR-92a in humans, we investigated miR-92a-3p expression in several blood compartments and assessed the effect of MRG-110 on target derepression. Healthy adults were randomly assigned (5:2) to receive a single intravenous dose of MRG-110 or placebo in one of seven sequential ascending intravenous dose cohorts ranging from 0.01 to 1.5 mg/kg body weight. MiR-92a-3p whole blood levels were time and dose dependently decreased with half-maximal inhibition of 0.27 and 0.31 mg/kg at 24 and 72 h after dosing, respectively. In the high-dose groups, >95% inhibition was detected at 24-72 h postinfusion and significant inhibition was observed for 2 weeks. Similar inhibitory effects were detected in isolated CD31+ cells, and miR-92a-3p expression was also inhibited in extracellular vesicles in the high-dose group. Target derepression was measured in whole blood and showed that ITGA5 and CD93 were increased at a dose of 1.5 mg/kg. Single-cell RNA sequencing of peripheral blood cells revealed a cell type-specific derepression of miR-92a targets. Together this study demonstrates that systemic infusion of anti-miR-92a efficiently inhibits miR-92a in the peripheral blood compartment and derepresses miR-92a targets in humans.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Integrinas/genética , Glicoproteínas de Membrana/genética , MicroARNs/genética , Oligonucleótidos/administración & dosificación , Receptores de Complemento/genética , Adolescente , Adulto , Antagomirs/administración & dosificación , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Linaje de la Célula/genética , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/genética , Femenino , Humanos , Masculino , MicroARNs/antagonistas & inhibidores , Persona de Mediana Edad , Oligonucleótidos Antisentido/administración & dosificación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Adulto Joven
6.
Cardiovasc Drugs Ther ; 31(4): 445-458, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28735360

RESUMEN

PURPOSE: The need for novel approaches to cardiovascular drug development served as the impetus to convene an open meeting of experts from the pharmaceutical industry and academia to assess the challenges and develop solutions for drug discovery in cardiovascular disease. METHODS: The Novel Cardiovascular Therapeutics Summit first reviewed recent examples of ongoing or recently completed programs translating basic science observations to targeted drug development, highlighting successes (protein convertase sutilisin/kexin type 9 [PCSK9] and neprilysin inhibition) and targets still under evaluation (cholesteryl ester transfer protein [CETP] inhibition), with the hope of gleaning key lessons to successful drug development in the current era. Participants then reviewed the use of innovative approaches being explored to facilitate rapid and more cost-efficient evaluations of drug candidates in a short timeframe. RESULTS: We summarize observations gleaned from this summit and offer insight into future cardiovascular drug development. CONCLUSIONS: The rapid development in genetic and high-throughput drug evaluation technologies, coupled with new approaches to rapidly evaluate potential cardiovascular therapies with in vitro techniques, offer opportunities to identify new drug targets for cardiovascular disease, study new therapies with better efficiency and higher throughput in the preclinical setting, and more rapidly bring the most promising therapies to human testing. However, there must be a critical interface between industry and academia to guide the future of cardiovascular drug development. The shared interest among academic institutions and pharmaceutical companies in developing promising therapies to address unmet clinical needs for patients with cardiovascular disease underlies and guides innovation and discovery platforms that are significantly altering the landscape of cardiovascular drug development.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Diseño de Fármacos , Animales , Fármacos Cardiovasculares/farmacología , Enfermedades Cardiovasculares/fisiopatología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Industria Farmacéutica , Humanos
7.
Mol Ther ; 25(3): 694-704, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202391

RESUMEN

MicroRNAs (miRNAs) are important regulators of biology and disease. Recent animal efficacy studies validate the therapeutic benefit of miRNA modulation and underscore the therapeutic value of miRNA-targeting oligonucleotides. However, whether disease conditions (stress) influence the pharmacological effects of an anti-miR is currently unknown. To study the effect of disease on target regulation after anti-miR treatment, we injected animals with anti-miR-208a, a synthetic oligonucleotide that inhibits the cardiomyocyte-specific miR-208a. Our data indicate that the presence of stress increases the number of regulated miR-208a targets, and that higher stress levels correlate with stronger target derepression. Additionally, the type of stress also influences which targets are regulated upon miR-208a inhibition. Studies in a large animal model indicate a similar stress-dependent anti-miR effect. Subsequent in vitro studies suggest that the influence of stress on anti-miR efficacy depends at least in part on increased cellular anti-miR uptake. These data indicate that the pharmacological effect of anti-miRs is stronger under disease conditions, and that both the type and severity of disease determine the therapeutic outcome. These facts will be important for assessing the therapeutic dose and predicting the therapeutic outcome when applying anti-miRs in a clinical setting.


Asunto(s)
Antagomirs/genética , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Estrés Fisiológico/genética , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Interferencia de ARN , Ratas , Porcinos
8.
EMBO Mol Med ; 8(6): 643-53, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27137489

RESUMEN

Abnormal remodeling of atherosclerotic plaques can lead to rupture, acute myocardial infarction, and death. Enhancement of plaque extracellular matrix (ECM) may improve plaque morphology and stabilize lesions. Here, we demonstrate that chronic administration of LNA-miR-29 into an atherosclerotic mouse model improves indices of plaque morphology. This occurs due to upregulation of miR-29 target genes of the ECM (col1A and col3A) resulting in reduced lesion size, enhanced fibrous cap thickness, and reduced necrotic zones. Sustained LNA-miR-29 treatment did not affect circulating lipids, blood chemistry, or ECM of solid organs including liver, lung, kidney, spleen, or heart. Collectively, these data support the idea that antagonizing miR-29 may promote beneficial plaque remodeling as an independent approach to stabilize vulnerable atherosclerotic lesions.


Asunto(s)
Aterosclerosis/patología , MicroARNs/antagonistas & inhibidores , Animales , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/metabolismo , Modelos Animales de Enfermedad , Ratones
9.
Proc Natl Acad Sci U S A ; 112(41): 12812-7, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417068

RESUMEN

The contribution of endothelial-derived miR-17∼92 to ischemia-induced arteriogenesis has not been investigated in an in vivo model. In the present study, we demonstrate a critical role for the endothelial-derived miR-17∼92 cluster in shaping physiological and ischemia-triggered arteriogenesis. Endothelial-specific deletion of miR-17∼92 results in an increase in collateral density limbs and hearts and in ischemic limbs compared with control mice, and consequently improves blood flow recovery. Individual cluster components positively or negatively regulate endothelial cell (EC) functions in vitro, and, remarkably, ECs lacking the cluster spontaneously form cords in a manner rescued by miR-17a, -18a, and -19a. Using both in vitro and in vivo analyses, we identified FZD4 and LRP6 as targets of miR-19a/b. Both of these targets were up-regulated in 17∼92 KO ECs compared with control ECs, and both were shown to be targeted by miR-19 using luciferase assays. We demonstrate that miR-19a negatively regulates FZD4, its coreceptor LRP6, and WNT signaling, and that antagonism of miR-19a/b in aged mice improves blood flow recovery after ischemia and reduces repression of these targets. Collectively, these data provide insights into miRNA regulation of arterialization and highlight the importance of vascular WNT signaling in maintaining arterial blood flow.


Asunto(s)
Receptores Frizzled/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , MicroARNs/metabolismo , Familia de Multigenes/fisiología , Neovascularización Fisiológica/fisiología , Vía de Señalización Wnt/fisiología , Animales , Receptores Frizzled/genética , Isquemia/genética , Isquemia/metabolismo , Isquemia/patología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Noqueados , MicroARNs/genética
10.
EMBO Mol Med ; 6(10): 1347-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25239947

RESUMEN

Over the last decade, great enthusiasm has evolved for microRNA (miRNA) therapeutics. Part of the excitement stems from the fact that a miRNA often regulates numerous related mRNAs. As such, modulation of a single miRNA allows for parallel regulation of multiple genes involved in a particular disease. While many studies have shown therapeutic efficacy using miRNA inhibitors, efforts to restore or increase the function of a miRNA have been lagging behind. The miR-29 family has gained a lot of attention for its clear function in tissue fibrosis. This fibroblast-enriched miRNA family is downregulated in fibrotic diseases which induces a coordinate increase of many extracellular matrix genes. Here, we show that intravenous injection of synthetic RNA duplexes can increase miR-29 levels in vivo for several days. Moreover, therapeutic delivery of these miR-29 mimics during bleomycin-induced pulmonary fibrosis restores endogenous miR-29 function whereby decreasing collagen expression and blocking and reversing pulmonary fibrosis. Our data support the feasibility of using miRNA mimics to therapeutically increase miRNAs and indicate miR-29 to be a potent therapeutic miRNA for treating pulmonary fibrosis.


Asunto(s)
MicroARNs/genética , Imitación Molecular/genética , Fibrosis Pulmonar/genética , Animales , Bleomicina , Northern Blotting , Línea Celular , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Imitación Molecular/fisiología , Células 3T3 NIH , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Eur J Heart Fail ; 15(6): 650-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23388090

RESUMEN

AIMS: Recent studies have shown that microRNAs (miRNAs), besides being potent regulators of gene expression, can additionally serve as circulating biomarkers of disease. The aim of this study is to determine if plasma miRNAs can be used as indicators of disease progression or therapeutic efficacy in hypertension-induced heart disease. METHODS AND RESULTS: In order to define circulating miRNAs that change during hypertension-induced heart failure and that respond to therapeutic treatment, we performed miRNA arrays on plasma RNA from hypertensive rats that show signs of heart failure. Array analysis indicated that approximately one-third of the miRNAs on the array are detectable in plasma. Quantitative real-time polymerase chain reaction (PCR) analysis for a selected panel of miRNAs indicated that circulating levels of miR-16, miR-20b, miR-93, miR-106b, miR-223, and miR-423-5p were significantly increased in response to hypertension-induced heart failure, while this effect was blunted in response to treatment with antimiR-208a as well as an ACE inhibitor. Moreover, treatment with antimiR-208a resulted in a dramatic increase in one miRNA, miR-19b. A time course study indicated that several of these miRNA changes track with disease progression. CONCLUSIONS: Circulating levels of miRNAs are responsive to therapeutic interventions and change during the progression of hypertension-induced heart disease.


Asunto(s)
Biomarcadores/sangre , Progresión de la Enfermedad , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , MicroARNs/sangre , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Captopril/uso terapéutico , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/diagnóstico , Hipertensión/inducido químicamente , Hipertensión/diagnóstico , Masculino , MicroARNs/genética , Péptido Natriurético Encefálico/sangre , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Cloruro de Sodio/toxicidad , Resultado del Tratamiento
12.
Proc Natl Acad Sci U S A ; 109(8): E481-9, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22223663

RESUMEN

Dramatic changes in chromatin structure and histone modification occur during oocyte growth, as well as a global cessation of transcription. The role of histone modifications in these processes is poorly understood. We report the effect of conditionally deleting Hdac1 and Hdac2 on oocyte development. Deleting either gene has little or no effect on oocyte development, whereas deleting both genes results in follicle development arrest at the secondary follicle stage. This developmental arrest is accompanied by substantial perturbation of the transcriptome and a global reduction in transcription even though histone acetylation is markedly increased. There is no apparent change in histone repressive marks, but there is a pronounced decrease in histone H3K4 methylation, an activating mark. The decrease in H3K4 methylation is likely a result of increased expression of Kdm5b because RNAi-mediated targeting of Kdm5b in double-mutant oocytes results in an increase in H3K4 methylation. An increase in TRP53 acetylation also occurs in mutant oocytes and may contribute to the observed increased incidence of apoptosis. Taken together, these results suggest seminal roles of acetylation of histone and nonhistone proteins in oocyte development.


Asunto(s)
Apoptosis/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Oocitos/enzimología , Transcripción Genética , Acetilación/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Marcación de Gen , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Infertilidad Femenina/enzimología , Infertilidad Femenina/patología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Metilación/efectos de los fármacos , Ratones , Oocitos/efectos de los fármacos , Oocitos/patología , Oogénesis/efectos de los fármacos , Oogénesis/genética , Tamaño de los Órganos/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/patología , Interferencia de ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Circ Res ; 110(1): 71-81, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22052914

RESUMEN

RATIONALE: Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. OBJECTIVE: This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. METHODS AND RESULTS: Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. CONCLUSIONS: Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury.


Asunto(s)
MicroARNs/antagonistas & inhibidores , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Animales , Supervivencia Celular/efectos de los fármacos , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/efectos de los fármacos , Modelos Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Porcinos
14.
Circulation ; 124(14): 1537-47, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21900086

RESUMEN

BACKGROUND: Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. METHODS AND RESULTS: Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. CONCLUSIONS: These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression.


Asunto(s)
Terapia Genética , Insuficiencia Cardíaca Diastólica/tratamiento farmacológico , Corazón/fisiopatología , Terapia Molecular Dirigida , Oligonucleótidos Antisentido/uso terapéutico , Animales , Vías de Administración de Medicamentos , Evaluación Preclínica de Medicamentos , Electrocardiografía , Perfilación de la Expresión Génica , Insuficiencia Cardíaca Diastólica/diagnóstico por imagen , Insuficiencia Cardíaca Diastólica/etiología , Insuficiencia Cardíaca Diastólica/genética , Hipertensión/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/sangre , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Interferencia de ARN , Ratas , Ratas Endogámicas Dahl , Transcripción Genética/efectos de los fármacos , Ultrasonografía , Remodelación Ventricular/efectos de los fármacos
15.
J Cardiovasc Pharmacol ; 57(1): 1-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20729755

RESUMEN

In the last 10 years it has become increasingly clear that a large class of small noncoding RNAs, known as microRNAs (miRNAs) are potent and crucial regulators of important cellular processes such as differentiation, growth, and survival. miRNAs regulate gene expression through binding to 3' UTRs of target messenger RNAs whereby inducing either messenger RNA degradation or inhibition of protein translation. Although we have only just begun to gain some insight into the biology surrounding miRNAs, their apparent relevance and potency during the onset and progression of disease has generated a lot of interest in assessing the feasibility of therapeutic regulation of miRNAs. As a result of the short RNA nature of miRNAs and lessons learned from small interfering RNA therapeutics and gene therapy, within a timespan of a few years, incredible progress has been made in advancing miRNA regulation into the clinic. We summarize the various therapeutic tools that are currently being investigated to manipulate miRNAs with a special focus on cardiovascular disease and speculate on the future developments of miRNA therapeutics.


Asunto(s)
Enfermedades Cardiovasculares/genética , Marcación de Gen , MicroARNs/genética , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Terapia Genética/métodos , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/uso terapéutico , ARN Pequeño no Traducido/uso terapéutico
16.
J Clin Invest ; 120(11): 3912-6, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20978354

RESUMEN

MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent cardiac hypertrophy and fibrosis in rodents in response to pressure overload. In contrast, we have shown here that miR-21-null mice are normal and, in response to a variety of cardiac stresses, display cardiac hypertrophy, fibrosis, upregulation of stress-responsive cardiac genes, and loss of cardiac contractility comparable to wild-type littermates. Similarly, inhibition of miR-21 through intravenous delivery of a locked nucleic acid-modified (LNA-modified) antimiR oligonucleotide also failed to block the remodeling response of the heart to stress. We therefore conclude that miR-21 is not essential for pathological cardiac remodeling.


Asunto(s)
Cardiomegalia/patología , MicroARNs/metabolismo , Miocardio , Estrés Fisiológico , Remodelación Ventricular/fisiología , Animales , Cardiomegalia/metabolismo , Hipertensión/patología , Ratones , Ratones Noqueados , MicroARNs/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocardio/patología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo
17.
Curr Drug Targets ; 11(8): 936-42, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20415653

RESUMEN

microRNAs are small non-coding RNAs that regulate gene expression at the posttranscriptional level by either inhibiting mRNA translation or inducing mRNA degradation. These regulatory mechanisms occur in a sequence-specific manner through the direct binding of the microRNA to complementary reverse sequences in the 3' UTR of target mRNAs. The sequence-specific nature of microRNAs allows for the regulation of numerous target mRNAs, which often are related genes, resulting in the robust regulation of entire pathways. Previous studies have identified expression signatures of microRNAs during various pathological settings, including those of cardiovascular disease. As evident through gain- and loss-of-function studies in mice, it is apparent microRNAs play specific and essential roles during cardiac hypertrophy, fibrosis, angiogenesis, apoptosis, and contractility. The powerful effects of altering microRNA levels genetically have resulted in the rapid progression of oligo-based regulation of microRNAs as a new class of cardiovascular therapeutics. Here we summarize the current oligo-based technologies in use to regulate microRNA levels in vivo and how these technologies have been applied to multiple microRNAs during cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Regulación de la Expresión Génica , MicroARNs/metabolismo , Animales , Secuencia de Bases , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Humanos , Ratones , Oligonucleótidos Antisentido/uso terapéutico , Procesamiento Postranscripcional del ARN
18.
Neuron Glia Biol ; 6(2): 93-107, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20388229

RESUMEN

Gene expression changes during cell differentiation are thought to be coordinated by histone modifications, but still little is known about the role of specific histone deacetylases (HDACs) in cell fate decisions in vivo. Here we demonstrate that the catalytic function of HDAC2 is required in adult, but not embryonic neurogenesis. While brain development and adult stem cell fate were normal upon conditional deletion of HDAC2 or in mice lacking the catalytic activity of HDAC2, neurons derived from both zones of adult neurogenesis die at a specific maturation stage. This phenotype is correlated with an increase in proliferation and the aberrant maintenance of proteins normally expressed only in progenitors, such as Sox2, also into some differentiating neurons, suggesting that HDAC2 is critically required to silence progenitor transcripts during neuronal differentiation of adult generated neurons. This cell-autonomous function of HDAC2 exclusively in adult neurogenesis reveals clear differences in the molecular mechanisms regulating neurogenesis during development and in adulthood.


Asunto(s)
Senescencia Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Histona Desacetilasa 2/fisiología , Neurogénesis/fisiología , Neuronas/enzimología , Animales , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Senescencia Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Histona Desacetilasa 2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Neuronas/citología
19.
J Biol Chem ; 285(19): 14663-70, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20190228

RESUMEN

Adipocyte differentiation is a well defined process that is under the control of transcriptional activators and repressors. We show that histone deacetylase (HDAC) inhibitors efficiently block adipocyte differentiation in vitro. This effect is specific to adipogenesis, as another mesenchymal differentiation process, osteoblastogenesis, is enhanced upon HDAC inhibition. Through the systematic genetic deletion of HDAC genes in cultured mesenchymal precursor cells, we show that deletion of HDAC1 and HDAC2 leads to reduced lipid accumulation, revealing redundant and requisite roles of these class I HDACs in adipogenesis. These findings unveil a previously unrecognized role for HDACs in the control of adipogenesis.


Asunto(s)
Adipogénesis/fisiología , Embrión de Mamíferos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Western Blotting , Butiratos/farmacología , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Perfilación de la Expresión Génica , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteogénesis , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Genes Dev ; 23(14): 1625-30, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19605684

RESUMEN

Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase.


Asunto(s)
Tipificación del Cuerpo/genética , Epigénesis Genética , Histona Desacetilasas/metabolismo , Cráneo/embriología , Animales , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Homeodominio LIM , Ratones , Factores de Transcripción Otx/metabolismo , Cráneo/anomalías , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...