Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 143(19): 1937-1952, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38446574

RESUMEN

ABSTRACT: In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Homeostasis , Animales , Humanos , Ratones , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Análisis de la Célula Individual
2.
Nat Med ; 30(2): 488-497, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355973

RESUMEN

Adenosine deaminase (ADA) deficiency leads to severe combined immunodeficiency (SCID). Previous clinical trials showed that autologous CD34+ cell gene therapy (GT) following busulfan reduced-intensity conditioning is a promising therapeutic approach for ADA-SCID, but long-term data are warranted. Here we report an analysis on long-term safety and efficacy data of 43 patients with ADA-SCID who received retroviral ex vivo bone marrow-derived hematopoietic stem cell GT. Twenty-two individuals (median follow-up 15.4 years) were treated in the context of clinical development or named patient program. Nineteen patients were treated post-marketing authorization (median follow-up 3.2 years), and two additional patients received mobilized peripheral blood CD34+ cell GT. At data cutoff, all 43 patients were alive, with a median follow-up of 5.0 years (interquartile range 2.4-15.4) and 2 years intervention-free survival (no need for long-term enzyme replacement therapy or allogeneic hematopoietic stem cell transplantation) of 88% (95% confidence interval 78.7-98.4%). Most adverse events/reactions were related to disease background, busulfan conditioning or immune reconstitution; the safety profile of the real world experience was in line with premarketing cohort. One patient from the named patient program developed a T cell leukemia related to treatment 4.7 years after GT and is currently in remission. Long-term persistence of multilineage gene-corrected cells, metabolic detoxification, immune reconstitution and decreased infection rates were observed. Estimated mixed-effects models showed that higher dose of CD34+ cells infused and younger age at GT affected positively the plateau of CD3+ transduced cells, lymphocytes and CD4+ CD45RA+ naive T cells, whereas the cell dose positively influenced the final plateau of CD15+ transduced cells. These long-term data suggest that the risk-benefit of GT in ADA remains favorable and warrant for continuing long-term safety monitoring. Clinical trial registration: NCT00598481 , NCT03478670 .


Asunto(s)
Agammaglobulinemia , Trasplante de Células Madre Hematopoyéticas , Inmunodeficiencia Combinada Grave , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Adenosina Desaminasa/genética , Adenosina Desaminasa/uso terapéutico , Busulfano/efectos adversos , Terapia Genética , Retroviridae/genética
3.
Front Immunol ; 14: 1187959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435083

RESUMEN

Hemophagocytic inflammatory syndrome (HIS) is a rare form of secondary hemophagocytic lymphohistiocytosis caused by an impaired equilibrium between natural killer and cytotoxic T-cell activity, evolving in hypercytokinemia and multiorgan failure. In the context of inborn errors of immunity, HIS occurrence has been reported in severe combined immunodeficiency (SCID) patients, including two cases of adenosine deaminase deficient-SCID (ADA-SCID). Here we describe two additional pediatric cases of ADA-SCID patients who developed HIS. In the first case, HIS was triggered by infectious complications while the patient was on enzyme replacement therapy; the patient was treated with high-dose corticosteroids and intravenous immunoglobulins with HIS remission. However, the patient required HLA-identical sibling donor hematopoietic stem cell transplantation (HSCT) for a definitive cure of ADA-SCID, without HIS relapse up to 13 years after HSCT. The second patient presented HIS 2 years after hematopoietic stem cell gene therapy (GT), secondarily to Varicella-Zoster vaccination and despite CD4+ and CD8+ lymphocytes' reconstitution in line with other ADA SCID patients treated with GT. The child responded to trilinear immunosuppressive therapy (corticosteroids, Cyclosporine A, Anakinra). We observed the persistence of gene-corrected cells up to 5 years post-GT, without HIS relapse. These new cases of children with HIS, together with those reported in the literature, support the hypothesis that a major dysregulation in the immune system can occur in ADA-SCID patients. Our cases show that early identification of the disease is imperative and that a variable degree of immunosuppression could be an effective treatment while allogeneic HSCT is required only in cases of refractoriness. A deeper knowledge of immunologic patterns contributing to HIS pathogenesis in ADA-SCID patients is desirable, to identify new targeted treatments and ensure patients' long-term recovery.


Asunto(s)
Agammaglobulinemia , Linfohistiocitosis Hemofagocítica , Inmunodeficiencia Combinada Grave , Humanos , Niño , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/etiología , Linfohistiocitosis Hemofagocítica/terapia , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/terapia , Agammaglobulinemia/terapia , Ciclosporina
4.
Nat Commun ; 14(1): 3068, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244942

RESUMEN

Mobilized peripheral blood is increasingly used instead of bone marrow as a source of autologous hematopoietic stem/progenitor cells for ex vivo gene therapy. Here, we present an unplanned exploratory analysis evaluating the hematopoietic reconstitution kinetics, engraftment and clonality in 13 pediatric Wiskott-Aldrich syndrome patients treated with autologous lentiviral-vector transduced hematopoietic stem/progenitor cells derived from mobilized peripheral blood (n = 7), bone marrow (n = 5) or the combination of the two sources (n = 1). 8 out of 13 gene therapy patients were enrolled in an open-label, non-randomized, phase 1/2 clinical study (NCT01515462) and the remaining 5 patients were treated under expanded access programs. Although mobilized peripheral blood- and bone marrow- hematopoietic stem/progenitor cells display similar capability of being gene-corrected, maintaining the engineered grafts up to 3 years after gene therapy, mobilized peripheral blood-gene therapy group shows faster neutrophil and platelet recovery, higher number of engrafted clones and increased gene correction in the myeloid lineage which correlate with higher amount of primitive and myeloid progenitors contained in hematopoietic stem/progenitor cells derived from mobilized peripheral blood. In vitro differentiation and transplantation studies in mice confirm that primitive hematopoietic stem/progenitor cells from both sources have comparable engraftment and multilineage differentiation potential. Altogether, our analyses reveal that the differential behavior after gene therapy of hematopoietic stem/progenitor cells derived from either bone marrow or mobilized peripheral blood is mainly due to the distinct cell composition rather than functional differences of the infused cell products, providing new frames of references for clinical interpretation of hematopoietic stem/progenitor cell transplantation outcome.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Síndrome de Wiskott-Aldrich , Humanos , Niño , Animales , Ratones , Médula Ósea , Células Madre Hematopoyéticas , Terapia Genética , Síndrome de Wiskott-Aldrich/genética , Factor Estimulante de Colonias de Granulocitos
5.
Cortex ; 147: 72-82, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35026556

RESUMEN

Negation applied to action contexts reduces the activation of the motor system. According to the Reusing Inhibition for Negation (RIN) hypothesis, such "disembodiment" effect occurs because understanding negations engages the reuse of inhibitory control mechanisms. Here, we investigated whether the right inferior frontal gyrus (rIFG) - a key area of the inhibitory control system - contributes to primary motor cortex (M1) processing of negated action-sentences. Using a perturb-and-measure paradigm, we applied off-line low-frequency repetitive TMS (rTMS) over the rIFG, before performing a reading task involving action and attentional sentences presented in both affirmative or negative form. During the reading task, motor excitability was assessed by recording motor-evoked potentials (MEPs) induced by single-pulse TMS (spTMS) over the left M1, at two loci in the sentence: the verb or the object. Results show that after sham stimulation (baseline), motor excitability measured on the verb, was reduced for negative, compared to affirmative action sentences. Crucially, neuromodulation of rIFG suppressed this inhibitory effect of negation, since motor excitability was equaled for negative and affirmative action sentences. As expected, no effect of negation was observed for attentional sentences or when the pulse was delivered over the object. Our study confirms that understanding negative action sentences inhibits M1. This effect took place at an early stage of semantic processing (i.e., while processing the verb in our task), and faded at a later time-point. Critically, by highlighting a causal role of rIFG in this motor inhibition, we provide direct neurophysiological support to the RIN hypothesis.


Asunto(s)
Potenciales Evocados Motores , Inhibición Psicológica , Potenciales Evocados Motores/fisiología , Humanos , Lenguaje , Inhibición Neural , Semántica , Estimulación Magnética Transcraneal
6.
Biochem Pharmacol ; 185: 114452, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545117

RESUMEN

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in the SLC26A2 gene encoding for a sulfate/chloride transporter. When SLC26A2 is impaired intracellular level of sulfate is reduced leading to the synthesis of undersulfated proteoglycans. In normal chondrocytes, the main source of intracellular sulfate is the extracellular uptake through SLC26A2, but a small amount comes from the catabolism of sulfur-containing amino acids and other thiols. Here N-acetylcysteine (NAC), an extensively used drug, is proposed as alternative source of intracellular sulfate in an animal model of DTD (dtd mouse). Mutant and wild type mice were treated twice a day with hypodermic injections of 250 mg NAC/kg body weight for one week after birth. At the end of the treatment, an improvement trend in cartilage proteoglycan sulfation and in the skeletal phenotype of treated dtd mice were observed. Thus, a longer treatment lasted three weeks starting from birth was performed. Treated mutant mice showed a significant increase of cartilage proteoglycan sulfation and a relevant improvement of the skeletal phenotype based on measurements of several bony elements and bone quality by DEXA and micro CT. Moreover, the amelioration of the overall growth plate morphology in treated dtd mice suggested a partial rescue of the endochondral ossification process. Overall, the results prove that NAC is an effective source of intracellular sulfate for dtd mice in the postnatal period. This finding paves the way for a potential pharmacological treatment of DTD patients taking advantage from a drug repositioning strategy.


Asunto(s)
Acetilcisteína/administración & dosificación , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Enanismo/tratamiento farmacológico , Enanismo/metabolismo , Fenotipo , Acetilcisteína/farmacocinética , Animales , Animales Recién Nacidos , Densidad Ósea/fisiología , Enanismo/diagnóstico por imagen , Depuradores de Radicales Libres/administración & dosificación , Depuradores de Radicales Libres/farmacocinética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...